Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Electric and dilatonic fields of a charged massive particle at rest in the field of a charged dilaton black hole (2309.01338v4)

Published 4 Sep 2023 in gr-qc and hep-th

Abstract: We study linear-perturbation equations for the two-body system of a charged dilaton black hole, of which dilaton coupling constant is $\alpha$, and a static particle with mass $m$, electric charge $q$, and dilatonic charge $\beta m$. We find that a consistent condition for the coupled equations corresponds to the equilibrium condition of the test particle. The expressions of classical fields are given in closed analytical formulas in the most interesting case with $\beta=\alpha$. We examine the electrical field around a charged dilaton black hole especially in the limit of the maximum electric charge and we find the electric Meissner effect which has been found for the Reissner-Nordstr\"om black hole in the Einstein-Maxwell system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. B. Leaute and B. Linet, “Electrostatics in a Reissner–Nordström space-time”, Phys. Lett. A58 (1976) 5.
  2. R. S. Hanni and R. Ruffini, “Lines of force of a point charge near a Schwarzschild black hole”, Phys. Rev. D8 (1973) 3259.
  3. R. S. Hanni, “Test charge near an extreme charged black hole”, Phys. Rev. D16 (1977) 1245.
  4. B. Linet and P. Teyssandier, “Point charge in a static, spherically symmetric Brans–Dicke field”, Gen. Rel. Grav. 10 (1979) 313.
  5. M. Watanabe and A. W. C. Lun, “Electrostatic potential of a point charge in a Brans–Dicke Reissner–Nordström field”, Phys. Rev. D88 (2013) 045007. arXiv:1305.6374 [gr-qc].
  6. A. Larrañaga, N. Herrera and S. Ramirez, “Electrostatics in surroundings of a topologically charged black hole in the brane”, Adv. High Energy Phys. 2014 (2014) 146094.
  7. D. Bini, A. Geralico and R. Ruffini, “On the equilibrium of a charged massive particle in the field of a Reissner–Nordström black hole”, Phys. Lett. A360 (2007) 515. gr-qc/0608139.
  8. D. Bini, A. Geralico and R. Ruffini, “Charged massive particle at rest in the field of a Reissner–Nordström black hole”, Phys. Rev. D75 (2007) 044012. gr-qc/0609041.
  9. D. Bini, A. Geralico and R. Ruffini, “Charged massive particle at rest in the field of a Reissner–Nordström black hole. II. Analysis of the field lines and the electric Meissner effect”, Phys. Rev. D77 (2008) 064020. arXiv:1408.4596 [gr-qc].
  10. D. Bini, A. Geralico and R. Ruffini, “On the “electric Meissner effect” in the field of a Reissner–Nordström black hole”, J. Korean Phys. Soc. 56 (2010) 1594. DOI:10.3938/jkps.56.1594
  11. G. W. Gibbons and K.-I. Maeda, “Black holes and membranes in higher dimensional theories with dilaton fields”, Nucl. Phys. B298 (1988) 741.
  12. D. Garfinkle, G. T. Horowitz and A. Strominger, “Charged black holes in string theory”, Phys. Rev. D43 (1991) 3140. ibid. D45 (1991) 3888 (E).
  13. C. F. E. Holzhey and F. Wilczek, “Black holes as elementary particles”, Nucl. Phys. B380 (1992) 447. hep-th/9202014.
  14. M. Rakhmanov, “Dilaton black holes with electric charge”, Phys. Rev. D50 (1994) 5155. hep-th/9310174.
  15. T. Regge and J. A. Wheeler, “Stability of a Schwarzschild singularity”, Phys. Rev. 108 (1957) 1063.
  16. F. J. Zerilli, “Perturbation analysis for gravitational and electromagnetic radiation in a Reissner–Nordström geometry”, Phys. Rev. D9 (1974) 860.
  17. T. Maki and K. Shiraishi, “Motion of test particles around a charged dilatonic black hole”, Class. Quant. Grav. 11 (1994) 227. arXiv:1707.05463 [gr-qc].
  18. G. Gibbons, R. Kallosh and B. Kol, “Moduli, scalar charges, and the first law of black hole thermodynamics”, Phys. Rev. Lett. 77 (1996) 4992. hep-th/9607108.
  19. C. Pacilio, “Scalar charge of black holes in Einstein–Maxwell-dilaton theory”, Phys. Rev. D98 (2018) 064055. arXiv:1806.10238 [gr-qc].
  20. R. Ballesteros, C. Gómez-Fayrén, T. Ortin and M. Zatti, “On scalar charges and black hole thermodynamics”, JHEP 2305 (2023) 158. arXiv:2302.11630 [hep-th].
  21. K. Shiraishi, “Multicentered solution for maximally charged dilaton black holes in arbitrary dimensions”, J. Math. Phys. 34 (1993) 1480. arXiv:1402.5484 [gr-qc].
  22. N. Khaled and M. Elashri, “Magnetically charged black hole”, J. Phys. Conf. Ser. 1253 (2019) 012008. DOI:10.1088/1742-6596/1253/1/012008
  23. J. H. Kim and S.-H. Moon, “Electric charge in interaction with magnetically charged black holes”, JHEP 0709 (2007) 088. arXiv:0707.4183 [gr-qc].
  24. K. C. K. Chan, J. H. Horne and R. B. Mann, “Charged dilaton black holes with unusual asymptotics”, Nucl. Phys. B447 (1995) 441. gr-qc/9502042.
  25. D. Astefanesei, J. L. Blázquez-Salcedo, C. Herdeiro, E. Radu and N. Sanchis-Gual, “Dynamically and thermodynamically stable black holes in Einstein–Maxwell-dilaton gravity”, JHEP 2007 (2020) 063. arXiv:1912.02192 [gr-qc].
  26. Á. Rincón and G. Panotopoulos, “Quasinormal modes of black holes with a scalar hair in Einstein–Maxwell-dilaton theory”, Phys. Scr. 95 (2020) 085303. arXiv:2007.01717 [gr-qc].
  27. S. Yu, J. Qiu and C. Gao, “Constructing black holes in Einstein–Maxwell-scalar theory”, Class. Quant. Grav. 38 (2021) 105006. arXiv:2005.14476 [gr-qc].
  28. K. Benakli, C. Branchina and G. Lafforgue-Marmet, “Dilatonic (Anti-) de Sitter black holes and Weak Gravity Conjecture”, JHEP 2111 (2021) 058. arXiv:2105.09800 [hep-th].
  29. S. H. Hendi, B. E. Panah, S. Panahiyan and M. Momennia, “Three dimensional magnetic solutions in massive gravity with (non)linear field”, Phys. Lett. B775 (2017) 251. arXiv:1704.00996 [gr-qc].
  30. Á. Rincón, E. Contreras, P. Bargueño, B. Koch, G. Panotopoulos and A. Hernández-Arboleda, “Scale-dependent three-dimensional charged black holes in linear and non-linear electrodynamics”, Euro. Phys. J. C77 (2017) 494. arXiv:1704.04845 [hep-th].
  31. S. H. Hendi, B. E. Panah and S. Panahiyan, “Black hole solutions in Gauss–Bonnet-massive gravity in the presence of power-Maxwell field”, Fortschr. Phys. 66 (2018) 1800005. arXiv:1708.02239 [hep-th].
  32. B. E. Panah, S. H. Hendi, S. Panahiyan and M. Hassaine, “BTZ dilatonic black holes coupled to Maxwell and Born–Infeld electrodynamics”, Phys. Rev. D98 (2018) 084006. arXiv:1712.04328 [physics.gen-ph].
  33. M. Dehghani, “Thermodynamic properties of dilaton black holes with nonlinear electrodynamics”, Phys. Rev. D98 (2018) 044008.
  34. M. Dehghani, “Thermodynamics of charged dilatonic BTZ black holes in rainbow gravity”, Phys. Lett. B777 (2018) 351.
  35. M. Dehghani, “Thermodynamics of novel dilatonic BTZ black holes coupled to Born–Infeld electrodynamics”, Phys. Rev. D99 (2019) 024001.
  36. K. Destounis, G. Panotopoulos and Á. Rincón, “Stability under scalar perturbations and quasinormal modes of 4D Einstein–Born–Infeld dilaton spactime: exact spectrum”, Euro. Phys. J. C78 (2018) 139. arXiv:1801.08955 [gr-qc].
  37. G. Panotopoulos and Á. Rincón, “Greybody factors for a minimally coupled massless scalar field in Einstein–Born–Infeld dilaton spacetime”, Phys. Rev. D96 (2017) 025009. arXiv:1706.07455 [hep-th].
  38. G. Panotopoulos and Á. Rincón, “Quasinormal modes of black holes in Einstein-power-Maxwell theory”, Int. J. Mod. Phys. D27 (2018) 1850034. arXiv:1711.04146 [hep-th].
  39. Á. Rincón and G. Panotopoulos, “Quasinormal modes of scale dependent black holes in (1+2)12(1+2)( 1 + 2 )-dimensional Einstein-power-Maxwell theory”, Phys. Rev. D97 (2018) 024027. arXiv:1801.03248 [hep-th].
  40. G. Panotopoulos and Á. Rincón, “Greybody factors for a minimally coupled scalar field in a three-dimensional Einstein-power-Maxwell black hole background”, Phys. Rev. D97 (2018) 085014. arXiv:1804.04684 [hep-th].
  41. G. Panotopoulos and Á. Rincón, “Quasinormal modes of regular black holes with Non-Linear-Electrodynamical sources”, Euro. Phys. J. Plus 134 (2019) 300. arXiv:1904.10847 [gr-qc].
  42. M. Dehghani and M. R. Setare, “Dilaton black holes with power law electrodynamics”, Phys. Rev. D100 (2019) 044022. arXiv:1906.11063 [gr-qc].

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.