Impact of Image Context for Single Deep Learning Face Morphing Attack Detection
Abstract: The increase in security concerns due to technological advancements has led to the popularity of biometric approaches that utilize physiological or behavioral characteristics for enhanced recognition. Face recognition systems (FRSs) have become prevalent, but they are still vulnerable to image manipulation techniques such as face morphing attacks. This study investigates the impact of the alignment settings of input images on deep learning face morphing detection performance. We analyze the interconnections between the face contour and image context and suggest optimal alignment conditions for face morphing detection.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.