Papers
Topics
Authors
Recent
Search
2000 character limit reached

Sketches, moves and partitions: counting regions of deformations of reflection arrangements

Published 31 Aug 2023 in math.CO | (2308.16653v1)

Abstract: The collection of reflecting hyperplanes of a finite Coxeter group is called a reflection arrangement and it appears in many subareas of combinatorics and representation theory. We focus on the problem of counting regions of reflection arrangements and their deformations. Inspired by the recent work of Bernardi, we show that the notion of moves and sketches can be used to provide a uniform and explicit bijection between regions of (the Catalan deformation of) a reflection arrangement and certain non-nesting partitions. We then use the exponential formula to describe a statistic on these partitions such that distribution is given by the coefficients of the characteristic polynomial. Finally, we consider a sub-arrangement of type C arrangement called the threshold arrangement and its Catalan and Shi deformations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.