Characterizations of distality via weak equicontinuity (2308.16519v1)
Abstract: For an infinite discrete group $G$ acting on a compact metric space $X$, we introduce several weak versions of equicontinuity along subsets of $G$ and show that if a minimal system $(X,G)$ admits an invariant measure then $(X,G)$ is distal if and only if it is pairwise IP$*$-equicontinuous; if the product system $(X\times X,G)$ of a minimal system $(X,G)$ has a dense set of minimal points, then $(X,G)$ is distal if and only if it is pairwise IP$*$-equicontinuous if and only if it is pairwise central$*$-equicontinuous; if $(X,G)$ is a minimal system with $G$ being abelian, then $(X,G)$ is a system of order $\infty$ if and only if it is pairwise FIP$*$-equicontinuous.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.