Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Quantum Phase Transitions in Optomechanical Systems (2308.15278v2)

Published 29 Aug 2023 in quant-ph

Abstract: In this letter, we investigate the ground state properties of an optomechanical system consisting of a coupled cavity and mechanical modes. An exact solution is given when the ratio $\eta$ between the cavity and mechanical frequencies tends to infinity. This solution reveals a coherent photon occupation in the ground state by breaking continuous or discrete symmetries, exhibiting an equilibrium quantum phase transition (QPT). In the $U(1)$-broken phase, an unstable Goldstone mode can be excited. In the model featuring $Z_2$ symmetry, we discover the mutually (in the finite $\eta$) or unidirectionally (in $\eta \rightarrow \infty$) dependent relation between the squeezed vacuum of the cavity and mechanical modes. In particular, when the cavity is driven by a squeezed field along the required squeezing parameter, it enables modifying the region of $Z_2$-broken phase and significantly reducing the coupling strength to reach QPTs. Furthermore, by coupling atoms to the cavity mode, the hybrid system can undergo a QPT at a hybrid critical point, which is cooperatively determined by the optomechanical and light-atom systems. These results suggest that this optomechanical system complements other phase transition models for exploring novel critical phenomena.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cambridge University Press, Cambridge, England, 2011).
  2. M. Vojta, Quantum phase transitions, Reports on Progress in Physics 66, 2069 (2003).
  3. P. W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13, 508 (1964).
  4. K. Hepp and E. H. Lieb, On the superradiant phase transition for molecules in a quantized radiation field: the Dicke maser model, Annals of Physics 76, 360 (1973).
  5. Y. K. Wang and F. T. Hioe, Phase transition in the Dicke model of superradiance, Phys. Rev. A 7, 831 (1973).
  6. C. Emary and T. Brandes, Chaos and the quantum phase transition in the Dicke model, Phys. Rev. E 67, 066203 (2003).
  7. S. Ashhab, Superradiance transition in a system with a single qubit and a single oscillator, Phys. Rev. A 87, 013826 (2013).
  8. M.-J. Hwang, R. Puebla, and M. B. Plenio, Quantum phase transition and universal dynamics in the Rabi model, Phys. Rev. Lett. 115, 180404 (2015).
  9. M.-J. Hwang and M. B. Plenio, Quantum phase transition in the finite Jaynes-Cummings lattice systems, Phys. Rev. Lett. 117, 123602 (2016).
  10. A. Baksic and C. Ciuti, Controlling discrete and continuous symmetries in “superradiant” phase transitions with circuit QED systems, Phys. Rev. Lett. 112, 173601 (2014).
  11. I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys. 86, 153 (2014).
  12. J. Vidal and S. Dusuel, Finite-size scaling exponents in the Dicke model, Europhysics Letters 74, 817 (2006).
  13. L. Bakemeier, A. Alvermann, and H. Fehske, Quantum phase transition in the Dicke model with critical and noncritical entanglement, Phys. Rev. A 85, 043821 (2012).
  14. N. Lambert, C. Emary, and T. Brandes, Entanglement and the phase transition in single-mode superradiance, Phys. Rev. Lett. 92, 073602 (2004).
  15. D. Guerci, P. Simon, and C. Mora, Superradiant phase transition in electronic systems and emergent topological phases, Phys. Rev. Lett. 125, 257604 (2020).
  16. G. Mazza and A. Georges, Superradiant quantum materials, Phys. Rev. Lett. 122, 017401 (2019).
  17. G. Chiriacò, M. Dalmonte, and T. Chanda, Critical light-matter entanglement at cavity mediated phase transitions, Phys. Rev. B 106, 155113 (2022).
  18. J. Zhao and M.-J. Hwang, Frustrated superradiant phase transition, Phys. Rev. Lett. 128, 163601 (2022).
  19. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86, 1391 (2014).
  20. G. Via, G. Kirchmair, and O. Romero-Isart, Strong single-photon coupling in superconducting quantum magnetomechanics, Phys. Rev. Lett. 114, 143602 (2015).
  21. O. Shevchuk, G. A. Steele, and Y. M. Blanter, Strong and tunable couplings in flux-mediated optomechanics, Phys. Rev. B 96, 014508 (2017).
  22. L. Neumeier, T. E. Northup, and D. E. Chang, Reaching the optomechanical strong-coupling regime with a single atom in a cavity, Phys. Rev. A 97, 063857 (2018).
  23. M. Kounalakis, Y. M. Blanter, and G. A. Steele, Flux-mediated optomechanics with a transmon qubit in the single-photon ultrastrong-coupling regime, Phys. Rev. Res. 2, 023335 (2020).
  24. I. Rodrigues, D. Bothner, and G. Steele, Coupling microwave photons to a mechanical resonator using quantum interference, Nature communications 10, 5359 (2019).
  25. S. Bose, K. Jacobs, and P. L. Knight, Preparation of nonclassical states in cavities with a moving mirror, Phys. Rev. A 56, 4175 (1997).
  26. A. Nunnenkamp, K. Børkje, and S. M. Girvin, Single-photon optomechanics, Phys. Rev. Lett. 107, 063602 (2011).
  27. P. Rabl, Photon blockade effect in optomechanical systems, Phys. Rev. Lett. 107, 063601 (2011).
  28. J.-Q. Liao and F. Nori, Photon blockade in quadratically coupled optomechanical systems, Phys. Rev. A 88, 023853 (2013).
  29. C. K. Law, Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation, Phys. Rev. A 51, 2537 (1995).
  30.  See supplemental material.
  31. J. Goldstone, A. Salam, and S. Weinberg, Broken symmetries, Phys. Rev. 127, 965 (1962).
  32. X.-G. Wen, Quantum field theory of many-body systems: from the origin of sound to an origin of light and electrons (Oxford University Press, New York, 2004).
  33. S. Felicetti and A. Le Boité, Universal spectral features of ultrastrongly coupled systems, Phys. Rev. Lett. 124, 040404 (2020).
  34. We consider the resonant relationship between the cavity frequency and the atomic transition frequency. Moreover, using Hamiltonian Hopsubscript𝐻opH_{\text{op}}italic_H start_POSTSUBSCRIPT op end_POSTSUBSCRIPT in Eq. (10) instead of H𝐻Hitalic_H to describe the optomechanical system can also obtain the same conclusions.
  35. S. Savasta, O. Di Stefano, and F. Nori, Thomas–Reiche–Kuhn (TRK) sum rule for interacting photons, Nanophotonics 10, 465 (2020).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.