Papers
Topics
Authors
Recent
2000 character limit reached

Tight-binding model subject to conditional resets at random times (2308.14040v2)

Published 27 Aug 2023 in cond-mat.stat-mech and quant-ph

Abstract: We investigate the dynamics of a quantum system subjected to a time-dependent and conditional resetting protocol. Namely, we ask: what happens when the unitary evolution of the system is repeatedly interrupted at random time instants with an instantaneous reset to a specified set of reset configurations taking place with a probability that depends on the current configuration of the system at the instant of reset? Analyzing the protocol in the framework of the so-called tight-binding model describing the hopping of a quantum particle to nearest-neighbour sites in a one-dimensional open lattice, we obtain analytical results for the probability of finding the particle on the different sites of the lattice. We explore a variety of dynamical scenarios, including the one in which the resetting time intervals are sampled from an exponential as well as from a power-law distribution, and a set-up that includes a Floquet-type Hamiltonian involving an external periodic forcing. Under exponential resetting, and in both presence and absence of the external forcing, the system relaxes to a stationary state characterized by localization of the particle around the reset sites. The choice of the reset sites plays a defining role in dictating the relative probability of finding the particle at the reset sites as well as in determining the overall spatial profile of the site-occupation probability. Indeed, a simple choice can be engineered that makes the spatial profile highly asymmetric even when the bare dynamics does not involve the effect of any bias. Furthermore, analyzing the case of power-law resetting serves to demonstrate that the attainment of the stationary state in this quantum problem is not always evident and depends crucially on whether the distribution of reset time intervals has a finite or an infinite mean.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.