Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DD-GCN: Directed Diffusion Graph Convolutional Network for Skeleton-based Human Action Recognition (2308.12501v1)

Published 24 Aug 2023 in cs.CV

Abstract: Graph Convolutional Networks (GCNs) have been widely used in skeleton-based human action recognition. In GCN-based methods, the spatio-temporal graph is fundamental for capturing motion patterns. However, existing approaches ignore the physical dependency and synchronized spatio-temporal correlations between joints, which limits the representation capability of GCNs. To solve these problems, we construct the directed diffusion graph for action modeling and introduce the activity partition strategy to optimize the weight sharing mechanism of graph convolution kernels. In addition, we present the spatio-temporal synchronization encoder to embed synchronized spatio-temporal semantics. Finally, we propose Directed Diffusion Graph Convolutional Network (DD-GCN) for action recognition, and the experiments on three public datasets: NTU-RGB+D, NTU-RGB+D 120, and NW-UCLA, demonstrate the state-of-the-art performance of our method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Chang Li (60 papers)
  2. Qian Huang (55 papers)
  3. Yingchi Mao (3 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.