Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continual Zero-Shot Learning through Semantically Guided Generative Random Walks (2308.12366v1)

Published 23 Aug 2023 in cs.CV

Abstract: Learning novel concepts, remembering previous knowledge, and adapting it to future tasks occur simultaneously throughout a human's lifetime. To model such comprehensive abilities, continual zero-shot learning (CZSL) has recently been introduced. However, most existing methods overused unseen semantic information that may not be continually accessible in realistic settings. In this paper, we address the challenge of continual zero-shot learning where unseen information is not provided during training, by leveraging generative modeling. The heart of the generative-based methods is to learn quality representations from seen classes to improve the generative understanding of the unseen visual space. Motivated by this, we introduce generalization-bound tools and provide the first theoretical explanation for the benefits of generative modeling to CZSL tasks. Guided by the theoretical analysis, we then propose our learning algorithm that employs a novel semantically guided Generative Random Walk (GRW) loss. The GRW loss augments the training by continually encouraging the model to generate realistic and characterized samples to represent the unseen space. Our algorithm achieves state-of-the-art performance on AWA1, AWA2, CUB, and SUN datasets, surpassing existing CZSL methods by 3-7\%. The code has been made available here \url{https://github.com/wx-zhang/IGCZSL}

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Wenxuan Zhang (75 papers)
  2. Paul Janson (8 papers)
  3. Kai Yi (42 papers)
  4. Ivan Skorokhodov (38 papers)
  5. Mohamed Elhoseiny (102 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.