Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The DAMIC excess from WIMP-nucleus elastic scattering (2308.12176v2)

Published 23 Aug 2023 in astro-ph.CO

Abstract: Two dark matter searches performed with charge-coupled devices (CCDs) in the DAMIC cryostat at SNOLAB reported with high statistical significance the presence of an unidentified source of low-energy events in bulk silicon. The observed spectrum is consistent with nuclear recoils from the elastic scattering of weakly interacting massive particles (WIMPs) with masses between 2 and 4 GeV. In the standard scenario of spin-independent WIMP-nucleus scattering, the derived cross section is conclusively excluded by results in argon by the DarkSide-50 experiment. We identify isospin-violating and spin-dependent scenarios where interactions with ${40}$Ar are strongly suppressed and the interpretation of the DAMIC excess as WIMP-nucleus elastic scattering remains viable.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. Edward W. Kolb and Michael S. Turner, The Early Universe, Vol. 69 (CRC Press, 1990).
  2. K. Griest and M. Kamionkowski, “Supersymmetric dark matter,” Phys. Rept. 333, 167–182 (2000).
  3. R. Bernabei et al., “First model independent results from DAMA/LIBRA-phase2,” Nucl. Phys. Atom. Energy 19, 307–325 (2018), arXiv:1805.10486 [hep-ex] .
  4. C. E. Aalseth et al. (CoGeNT), “CoGeNT: A Search for Low-Mass Dark Matter using p-type Point Contact Germanium Detectors,” Phys. Rev. D 88, 012002 (2013), arXiv:1208.5737 [astro-ph.CO] .
  5. R. Agnese et al. (CDMS), “Silicon Detector Dark Matter Results from the Final Exposure of CDMS II,” Phys. Rev. Lett. 111, 251301 (2013), arXiv:1304.4279 [hep-ex] .
  6. E. Aprile et al. (XENON), “Light Dark Matter Search with Ionization Signals in XENON1T,” Phys. Rev. Lett. 123, 251801 (2019a), arXiv:1907.11485 [hep-ex] .
  7. D. S. Akerib et al. (LUX), “Extending light WIMP searches to single scintillation photons in LUX,” Phys. Rev. D 101, 042001 (2020), arXiv:1907.06272 [astro-ph.CO] .
  8. E. Aprile et al. (XENON), “Search for Coherent Elastic Scattering of Solar 88{}^{8}start_FLOATSUPERSCRIPT 8 end_FLOATSUPERSCRIPTB Neutrinos in the XENON1T Dark Matter Experiment,” Phys. Rev. Lett. 126, 091301 (2021), arXiv:2012.02846 [hep-ex] .
  9. Wenbo Ma et al. (PandaX), “Search for Solar B8 Neutrinos in the PandaX-4T Experiment Using Neutrino-Nucleus Coherent Scattering,” Phys. Rev. Lett. 130, 021802 (2023), arXiv:2207.04883 [hep-ex] .
  10. Shuaijie Li et al. (PandaX), “Search for Light Dark Matter with Ionization Signals in the PandaX-4T Experiment,” Phys. Rev. Lett. 130, 261001 (2023), arXiv:2212.10067 [hep-ex] .
  11. J. Aalbers et al. (LUX-ZEPLIN), “First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment,” Phys. Rev. Lett. 131, 041002 (2023), arXiv:2207.03764 [hep-ex] .
  12. E. Aprile et al. (XENON), “First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment,” Phys. Rev. Lett. 131, 041003 (2023), arXiv:2303.14729 [hep-ex] .
  13. F. Giuliani, “Are direct search experiments sensitive to all spin-independent WIMP candidates?” Phys. Rev. Lett. 95, 101301 (2005), arXiv:hep-ph/0504157 .
  14. Jonathan L. Feng, Jason Kumar, Danny Marfatia,  and David Sanford, “Isospin-Violating Dark Matter,” Phys. Lett. B 703, 124–127 (2011), arXiv:1102.4331 [hep-ph] .
  15. A. Liam Fitzpatrick, Wick Haxton, Emanuel Katz, Nicholas Lubbers,  and Yiming Xu, “The Effective Field Theory of Dark Matter Direct Detection,” JCAP 02, 004 (2013), arXiv:1203.3542 [hep-ph] .
  16. Martin Hoferichter, Philipp Klos, Javier Menéndez,  and Achim Schwenk, “Nuclear structure factors for general spin-independent WIMP-nucleus scattering,” Phys. Rev. D 99, 055031 (2019), arXiv:1812.05617 [hep-ph] .
  17. J. Amaré et al., “First Results on Dark Matter Annual Modulation from the ANAIS-112 Experiment,” Phys. Rev. Lett. 123, 031301 (2019), arXiv:1903.03973 [astro-ph.IM] .
  18. R. Agnese et al. (SuperCDMS), “Search for Low-Mass Dark Matter with CDMSlite Using a Profile Likelihood Fit,” Phys. Rev. D 99, 062001 (2019), arXiv:1808.09098 [astro-ph.CO] .
  19. A. Aguilar-Arevalo et al. (DAMIC, DAMIC-M, SENSEI), “Confirmation of the spectral excess in DAMIC at SNOLAB with skipper CCDs,” Phys. Rev. D 109, 062007 (2024), arXiv:2306.01717 [astro-ph.CO] .
  20. A. Aguilar-Arevalo et al. (DAMIC), “Results on low-mass weakly interacting massive particles from a 11 kg-day target exposure of DAMIC at SNOLAB,” Phys. Rev. Lett. 125, 241803 (2020), arXiv:2007.15622 [astro-ph.CO] .
  21. A. Aguilar-Arevalo et al. (DAMIC), “Characterization of the background spectrum in DAMIC at SNOLAB,” Phys. Rev. D 105, 062003 (2022), arXiv:2110.13133 [hep-ex] .
  22. SNOLAB User’s Handbook, Rev. 2 (2006) p. 13.
  23. J. D. Lewin and P. F. Smith, “Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil,” Astropart. Phys. 6, 87–112 (1996).
  24. D. Baxter et al., “Recommended conventions for reporting results from direct dark matter searches,” Eur. Phys. J. C 81, 907 (2021), arXiv:2105.00599 [hep-ex] .
  25. A. E. Chavarria et al., “Measurement of the ionization produced by sub-keV silicon nuclear recoils in a CCD dark matter detector,” Phys. Rev. D 94, 082007 (2016), arXiv:1608.00957 [astro-ph.IM] .
  26. R. Agnese et al. (SuperCDMS), “Projected Sensitivity of the SuperCDMS SNOLAB experiment,” Phys. Rev. D 95, 082002 (2017), arXiv:1610.00006 [physics.ins-det] .
  27. M. F. Albakry et al. (SuperCDMS), “First Measurement of the Nuclear-Recoil Ionization Yield in Silicon at 100 eV,” Phys. Rev. Lett. 131, 091801 (2023), arXiv:2303.02196 [physics.ins-det] .
  28. C. Amole et al. (PICO), “Dark Matter Search Results from the Complete Exposure of the PICO-60 C33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPTF88{}_{8}start_FLOATSUBSCRIPT 8 end_FLOATSUBSCRIPT Bubble Chamber,” Phys. Rev. D 100, 022001 (2019), arXiv:1902.04031 [astro-ph.CO] .
  29. A. H. Abdelhameed et al. (CRESST), “First results from the CRESST-III low-mass dark matter program,” Phys. Rev. D 100, 102002 (2019), arXiv:1904.00498 [astro-ph.CO] .
  30. F. G. Kondev, M. Wang, W. J. Huang, S. Naimi,  and G. Audi, “The NUBASE2020 evaluation of nuclear physics properties,” Chin. Phys. C 45, 030001 (2021).
  31. Andriy Kurylov and Marc Kamionkowski, “Generalized analysis of weakly interacting massive particle searches,” Phys. Rev. D 69, 063503 (2004), arXiv:hep-ph/0307185 .
  32. Jonathan L. Feng, Jason Kumar, Danny Marfatia,  and David Sanford, “Isospin-Violating Dark Matter Benchmarks for Snowmass 2013,” in Snowmass 2013: Snowmass on the Mississippi (2013) arXiv:1307.1758 [hep-ph] .
  33. Vincenzo Cirigliano, Michael L. Graesser,  and Grigory Ovanesyan, “WIMP-nucleus scattering in chiral effective theory,” JHEP 10, 025 (2012), arXiv:1205.2695 [hep-ph] .
  34. Vincenzo Cirigliano, Michael L. Graesser, Grigory Ovanesyan,  and Ian M. Shoemaker, “Shining LUX on Isospin-Violating Dark Matter Beyond Leading Order,” Phys. Lett. B 739, 293–301 (2014), arXiv:1311.5886 [hep-ph] .
  35. P. Agnes et al. (DarkSide-50), “Search for low-mass dark matter WIMPs with 12 ton-day exposure of DarkSide-50,” Phys. Rev. D 107, 063001 (2023), arXiv:2207.11966 [hep-ex] .
  36. D. S. Akerib et al. (LUX), “Improving sensitivity to low-mass dark matter in LUX using a novel electrode background mitigation technique,” Phys. Rev. D 104, 012011 (2021), arXiv:2011.09602 [hep-ex] .
  37. E. Behnke et al., “Final Results of the PICASSO Dark Matter Search Experiment,” Astropart. Phys. 90, 85–92 (2017), arXiv:1611.01499 [hep-ex] .
  38. E. Aprile et al. (XENON), “Search for Light Dark Matter Interactions Enhanced by the Migdal Effect or Bremsstrahlung in XENON1T,” Phys. Rev. Lett. 123, 241803 (2019b), arXiv:1907.12771 [hep-ex] .
  39. Matthew R. Buckley and W. Hugh Lippincott, “A Spin-Dependent Interpretation for Possible Signals of Light Dark Matter,” Phys. Rev. D 88, 056003 (2013), arXiv:1306.2349 [hep-ph] .
  40. Andreas Crivellin, Francesco D’Eramo,  and Massimiliano Procura, “New Constraints on Dark Matter Effective Theories from Standard Model Loops,” Phys. Rev. Lett. 112, 191304 (2014), arXiv:1402.1173 [hep-ph] .
  41. Fady Bishara, Joachim Brod, Benjamin Grinstein,  and Jure Zupan, “Renormalization Group Effects in Dark Matter Interactions,” JHEP 03, 089 (2020), arXiv:1809.03506 [hep-ph] .
  42. Andrew Cheek, Darren D. Price,  and Ellen M. Sandford, “Isospin-violating dark matter at liquid noble detectors: new constraints, future projections, and an exploration of target complementarity,” Eur. Phys. J. C 83, 914 (2023), arXiv:2302.05458 [hep-ph] .
  43. R. Agnese et al. (SuperCDMS), “Low-mass dark matter search with CDMSlite,” Phys. Rev. D 97, 022002 (2018), arXiv:1707.01632 [astro-ph.CO] .
  44. Masahiro Ibe, Wakutaka Nakano, Yutaro Shoji,  and Kazumine Suzuki, “Migdal Effect in Dark Matter Direct Detection Experiments,” JHEP 03, 194 (2018), arXiv:1707.07258 [hep-ph] .
  45. Jingke Xu et al., “Search for the Migdal effect in liquid xenon with keV-level nuclear recoils,” Phys. Rev. D 109, L051101 (2024), arXiv:2307.12952 [hep-ex] .
  46. Paolo Privitera (DAMIC-M), “The DAMIC-M experiment: status and first results,” PoS TAUP2023, 066 (2024).
  47. Liron Barak et al. (SENSEI), “SENSEI: Direct-Detection Results on sub-GeV Dark Matter from a New Skipper-CCD,” Phys. Rev. Lett. 125, 171802 (2020), arXiv:2004.11378 [astro-ph.CO] .
  48. M. F. Albakry et al. (SuperCDMS), “A Strategy for Low-Mass Dark Matter Searches with Cryogenic Detectors in the SuperCDMS SNOLAB Facility,” in Snowmass 2021 (2022) arXiv:2203.08463 [physics.ins-det] .
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 2 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube