The DAMIC excess from WIMP-nucleus elastic scattering (2308.12176v2)
Abstract: Two dark matter searches performed with charge-coupled devices (CCDs) in the DAMIC cryostat at SNOLAB reported with high statistical significance the presence of an unidentified source of low-energy events in bulk silicon. The observed spectrum is consistent with nuclear recoils from the elastic scattering of weakly interacting massive particles (WIMPs) with masses between 2 and 4 GeV. In the standard scenario of spin-independent WIMP-nucleus scattering, the derived cross section is conclusively excluded by results in argon by the DarkSide-50 experiment. We identify isospin-violating and spin-dependent scenarios where interactions with ${40}$Ar are strongly suppressed and the interpretation of the DAMIC excess as WIMP-nucleus elastic scattering remains viable.
- Edward W. Kolb and Michael S. Turner, The Early Universe, Vol. 69 (CRC Press, 1990).
- K. Griest and M. Kamionkowski, “Supersymmetric dark matter,” Phys. Rept. 333, 167–182 (2000).
- R. Bernabei et al., “First model independent results from DAMA/LIBRA-phase2,” Nucl. Phys. Atom. Energy 19, 307–325 (2018), arXiv:1805.10486 [hep-ex] .
- C. E. Aalseth et al. (CoGeNT), “CoGeNT: A Search for Low-Mass Dark Matter using p-type Point Contact Germanium Detectors,” Phys. Rev. D 88, 012002 (2013), arXiv:1208.5737 [astro-ph.CO] .
- R. Agnese et al. (CDMS), “Silicon Detector Dark Matter Results from the Final Exposure of CDMS II,” Phys. Rev. Lett. 111, 251301 (2013), arXiv:1304.4279 [hep-ex] .
- E. Aprile et al. (XENON), “Light Dark Matter Search with Ionization Signals in XENON1T,” Phys. Rev. Lett. 123, 251801 (2019a), arXiv:1907.11485 [hep-ex] .
- D. S. Akerib et al. (LUX), “Extending light WIMP searches to single scintillation photons in LUX,” Phys. Rev. D 101, 042001 (2020), arXiv:1907.06272 [astro-ph.CO] .
- E. Aprile et al. (XENON), “Search for Coherent Elastic Scattering of Solar 88{}^{8}start_FLOATSUPERSCRIPT 8 end_FLOATSUPERSCRIPTB Neutrinos in the XENON1T Dark Matter Experiment,” Phys. Rev. Lett. 126, 091301 (2021), arXiv:2012.02846 [hep-ex] .
- Wenbo Ma et al. (PandaX), “Search for Solar B8 Neutrinos in the PandaX-4T Experiment Using Neutrino-Nucleus Coherent Scattering,” Phys. Rev. Lett. 130, 021802 (2023), arXiv:2207.04883 [hep-ex] .
- Shuaijie Li et al. (PandaX), “Search for Light Dark Matter with Ionization Signals in the PandaX-4T Experiment,” Phys. Rev. Lett. 130, 261001 (2023), arXiv:2212.10067 [hep-ex] .
- J. Aalbers et al. (LUX-ZEPLIN), “First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment,” Phys. Rev. Lett. 131, 041002 (2023), arXiv:2207.03764 [hep-ex] .
- E. Aprile et al. (XENON), “First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment,” Phys. Rev. Lett. 131, 041003 (2023), arXiv:2303.14729 [hep-ex] .
- F. Giuliani, “Are direct search experiments sensitive to all spin-independent WIMP candidates?” Phys. Rev. Lett. 95, 101301 (2005), arXiv:hep-ph/0504157 .
- Jonathan L. Feng, Jason Kumar, Danny Marfatia, and David Sanford, “Isospin-Violating Dark Matter,” Phys. Lett. B 703, 124–127 (2011), arXiv:1102.4331 [hep-ph] .
- A. Liam Fitzpatrick, Wick Haxton, Emanuel Katz, Nicholas Lubbers, and Yiming Xu, “The Effective Field Theory of Dark Matter Direct Detection,” JCAP 02, 004 (2013), arXiv:1203.3542 [hep-ph] .
- Martin Hoferichter, Philipp Klos, Javier Menéndez, and Achim Schwenk, “Nuclear structure factors for general spin-independent WIMP-nucleus scattering,” Phys. Rev. D 99, 055031 (2019), arXiv:1812.05617 [hep-ph] .
- J. Amaré et al., “First Results on Dark Matter Annual Modulation from the ANAIS-112 Experiment,” Phys. Rev. Lett. 123, 031301 (2019), arXiv:1903.03973 [astro-ph.IM] .
- R. Agnese et al. (SuperCDMS), “Search for Low-Mass Dark Matter with CDMSlite Using a Profile Likelihood Fit,” Phys. Rev. D 99, 062001 (2019), arXiv:1808.09098 [astro-ph.CO] .
- A. Aguilar-Arevalo et al. (DAMIC, DAMIC-M, SENSEI), “Confirmation of the spectral excess in DAMIC at SNOLAB with skipper CCDs,” Phys. Rev. D 109, 062007 (2024), arXiv:2306.01717 [astro-ph.CO] .
- A. Aguilar-Arevalo et al. (DAMIC), “Results on low-mass weakly interacting massive particles from a 11 kg-day target exposure of DAMIC at SNOLAB,” Phys. Rev. Lett. 125, 241803 (2020), arXiv:2007.15622 [astro-ph.CO] .
- A. Aguilar-Arevalo et al. (DAMIC), “Characterization of the background spectrum in DAMIC at SNOLAB,” Phys. Rev. D 105, 062003 (2022), arXiv:2110.13133 [hep-ex] .
- SNOLAB User’s Handbook, Rev. 2 (2006) p. 13.
- J. D. Lewin and P. F. Smith, “Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil,” Astropart. Phys. 6, 87–112 (1996).
- D. Baxter et al., “Recommended conventions for reporting results from direct dark matter searches,” Eur. Phys. J. C 81, 907 (2021), arXiv:2105.00599 [hep-ex] .
- A. E. Chavarria et al., “Measurement of the ionization produced by sub-keV silicon nuclear recoils in a CCD dark matter detector,” Phys. Rev. D 94, 082007 (2016), arXiv:1608.00957 [astro-ph.IM] .
- R. Agnese et al. (SuperCDMS), “Projected Sensitivity of the SuperCDMS SNOLAB experiment,” Phys. Rev. D 95, 082002 (2017), arXiv:1610.00006 [physics.ins-det] .
- M. F. Albakry et al. (SuperCDMS), “First Measurement of the Nuclear-Recoil Ionization Yield in Silicon at 100 eV,” Phys. Rev. Lett. 131, 091801 (2023), arXiv:2303.02196 [physics.ins-det] .
- C. Amole et al. (PICO), “Dark Matter Search Results from the Complete Exposure of the PICO-60 C33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPTF88{}_{8}start_FLOATSUBSCRIPT 8 end_FLOATSUBSCRIPT Bubble Chamber,” Phys. Rev. D 100, 022001 (2019), arXiv:1902.04031 [astro-ph.CO] .
- A. H. Abdelhameed et al. (CRESST), “First results from the CRESST-III low-mass dark matter program,” Phys. Rev. D 100, 102002 (2019), arXiv:1904.00498 [astro-ph.CO] .
- F. G. Kondev, M. Wang, W. J. Huang, S. Naimi, and G. Audi, “The NUBASE2020 evaluation of nuclear physics properties,” Chin. Phys. C 45, 030001 (2021).
- Andriy Kurylov and Marc Kamionkowski, “Generalized analysis of weakly interacting massive particle searches,” Phys. Rev. D 69, 063503 (2004), arXiv:hep-ph/0307185 .
- Jonathan L. Feng, Jason Kumar, Danny Marfatia, and David Sanford, “Isospin-Violating Dark Matter Benchmarks for Snowmass 2013,” in Snowmass 2013: Snowmass on the Mississippi (2013) arXiv:1307.1758 [hep-ph] .
- Vincenzo Cirigliano, Michael L. Graesser, and Grigory Ovanesyan, “WIMP-nucleus scattering in chiral effective theory,” JHEP 10, 025 (2012), arXiv:1205.2695 [hep-ph] .
- Vincenzo Cirigliano, Michael L. Graesser, Grigory Ovanesyan, and Ian M. Shoemaker, “Shining LUX on Isospin-Violating Dark Matter Beyond Leading Order,” Phys. Lett. B 739, 293–301 (2014), arXiv:1311.5886 [hep-ph] .
- P. Agnes et al. (DarkSide-50), “Search for low-mass dark matter WIMPs with 12 ton-day exposure of DarkSide-50,” Phys. Rev. D 107, 063001 (2023), arXiv:2207.11966 [hep-ex] .
- D. S. Akerib et al. (LUX), “Improving sensitivity to low-mass dark matter in LUX using a novel electrode background mitigation technique,” Phys. Rev. D 104, 012011 (2021), arXiv:2011.09602 [hep-ex] .
- E. Behnke et al., “Final Results of the PICASSO Dark Matter Search Experiment,” Astropart. Phys. 90, 85–92 (2017), arXiv:1611.01499 [hep-ex] .
- E. Aprile et al. (XENON), “Search for Light Dark Matter Interactions Enhanced by the Migdal Effect or Bremsstrahlung in XENON1T,” Phys. Rev. Lett. 123, 241803 (2019b), arXiv:1907.12771 [hep-ex] .
- Matthew R. Buckley and W. Hugh Lippincott, “A Spin-Dependent Interpretation for Possible Signals of Light Dark Matter,” Phys. Rev. D 88, 056003 (2013), arXiv:1306.2349 [hep-ph] .
- Andreas Crivellin, Francesco D’Eramo, and Massimiliano Procura, “New Constraints on Dark Matter Effective Theories from Standard Model Loops,” Phys. Rev. Lett. 112, 191304 (2014), arXiv:1402.1173 [hep-ph] .
- Fady Bishara, Joachim Brod, Benjamin Grinstein, and Jure Zupan, “Renormalization Group Effects in Dark Matter Interactions,” JHEP 03, 089 (2020), arXiv:1809.03506 [hep-ph] .
- Andrew Cheek, Darren D. Price, and Ellen M. Sandford, “Isospin-violating dark matter at liquid noble detectors: new constraints, future projections, and an exploration of target complementarity,” Eur. Phys. J. C 83, 914 (2023), arXiv:2302.05458 [hep-ph] .
- R. Agnese et al. (SuperCDMS), “Low-mass dark matter search with CDMSlite,” Phys. Rev. D 97, 022002 (2018), arXiv:1707.01632 [astro-ph.CO] .
- Masahiro Ibe, Wakutaka Nakano, Yutaro Shoji, and Kazumine Suzuki, “Migdal Effect in Dark Matter Direct Detection Experiments,” JHEP 03, 194 (2018), arXiv:1707.07258 [hep-ph] .
- Jingke Xu et al., “Search for the Migdal effect in liquid xenon with keV-level nuclear recoils,” Phys. Rev. D 109, L051101 (2024), arXiv:2307.12952 [hep-ex] .
- Paolo Privitera (DAMIC-M), “The DAMIC-M experiment: status and first results,” PoS TAUP2023, 066 (2024).
- Liron Barak et al. (SENSEI), “SENSEI: Direct-Detection Results on sub-GeV Dark Matter from a New Skipper-CCD,” Phys. Rev. Lett. 125, 171802 (2020), arXiv:2004.11378 [astro-ph.CO] .
- M. F. Albakry et al. (SuperCDMS), “A Strategy for Low-Mass Dark Matter Searches with Cryogenic Detectors in the SuperCDMS SNOLAB Facility,” in Snowmass 2021 (2022) arXiv:2203.08463 [physics.ins-det] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.