Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Equivariant localization for AdS/CFT (2308.11701v3)

Published 22 Aug 2023 in hep-th

Abstract: We explain how equivariant localization may be applied to AdS/CFT to compute various BPS observables in gravity, such as central charges and conformal dimensions of chiral primary operators, without solving the supergravity equations. The key ingredient is that supersymmetric AdS solutions with an R-symmetry are equipped with a set of equivariantly closed forms. These may in turn be used to impose flux quantization and compute observables for supergravity solutions, using only topological information and the Berline--Vergne--Atiyah--Bott fixed point formula. We illustrate the formalism by considering $AdS_5\times M_6$ and $AdS_3\times M_8$ solutions of $D=11$ supergravity. As well as recovering results for many classes of well-known supergravity solutions, without using any knowledge of their explicit form, we also compute central charges for which explicit supergravity solutions have not been constructed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. J. P. Gauntlett, D. Martelli, S. Pakis, and D. Waldram, “G structures and wrapped NS5-branes,” Commun. Math. Phys. 247 (2004) 421–445, arXiv:hep-th/0205050.
  2. J. P. Gauntlett, D. Martelli, J. Sparks, and D. Waldram, “Supersymmetric AdS(5) solutions of M-theory,” Class. Quant. Grav. 21 (2004) 4335–4366, arXiv:hep-th/0402153.
  3. H. Lin, O. Lunin, and J. M. Maldacena, “Bubbling AdS space and 1/2 BPS geometries,” JHEP 10 (2004) 025, arXiv:hep-th/0409174.
  4. J. P. Gauntlett, D. Martelli, J. Sparks, and D. Waldram, “Supersymmetric AdS(5) solutions of type IIB supergravity,” Class. Quant. Grav. 23 (2006) 4693–4718, arXiv:hep-th/0510125.
  5. N. Kim, “AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT solutions of IIB supergravity from D3-branes,” JHEP 01 (2006) 094, arXiv:hep-th/0511029 [hep-th].
  6. J. P. Gauntlett, O. A. Mac Conamhna, T. Mateos, and D. Waldram, “New supersymmetric AdS(3) solutions,” Phys.Rev. D74 (2006) 106007, arXiv:hep-th/0608055 [hep-th].
  7. J. P. Gauntlett, O. A. P. Mac Conamhna, T. Mateos, and D. Waldram, “AdS spacetimes from wrapped M5 branes,” JHEP 11 (2006) 053, arXiv:hep-th/0605146.
  8. N. Kim and J.-D. Park, “Comments on AdS(2) solutions of D = 11 supergravity,” JHEP 09 (2006) 041, arXiv:hep-th/0607093.
  9. E. D’Hoker, J. Estes, and M. Gutperle, “Exact half-BPS Type IIB interface solutions. I. Local solution and supersymmetric Janus,” JHEP 06 (2007) 021, arXiv:0705.0022 [hep-th].
  10. J. P. Gauntlett and O. A. P. Mac Conamhna, “AdS spacetimes from wrapped D3-branes,” Class. Quant. Grav. 24 (2007) 6267–6286, arXiv:0707.3105 [hep-th].
  11. P. Benetti Genolini, J. P. Gauntlett, and J. Sparks, “Equivariant Localization in Supergravity,” Phys. Rev. Lett. 131 no. 12, (2023) 121602, arXiv:2306.03868 [hep-th].
  12. P. Benetti Genolini, J. P. Gauntlett, and J. Sparks, “Localizing wrapped M5-branes and gravitational blocks,” Phys. Rev. D 108 no. 10, (2023) L101903, arXiv:2308.10933 [hep-th].
  13. N. Berline and M. Vergne, “Classes caractéristiques équivariantes. Formules de local- isation en cohomologie équivariante,” C.R. Acad. Sc. Paris 295 (1982) 539–541.
  14. M. F. Atiyah and R. Bott, “The Moment map and equivariant cohomology,” Topology 23 (1984) 1–28.
  15. K. A. Intriligator and B. Wecht, “The Exact superconformal R symmetry maximizes a𝑎aitalic_a,” Nucl. Phys. B667 (2003) 183–200, arXiv:hep-th/0304128 [hep-th].
  16. F. Benini and N. Bobev, “Exact two-dimensional superconformal R-symmetry and c-extremization,” Phys. Rev. Lett. 110 no. 6, (2013) 061601, arXiv:1211.4030 [hep-th].
  17. F. Benini and N. Bobev, “Two-dimensional SCFTs from wrapped branes and c-extremization,” JHEP 06 (2013) 005, arXiv:1302.4451 [hep-th].
  18. B. S. Acharya, J. M. Figueroa-O’Farrill, C. M. Hull, and B. J. Spence, “Branes at conical singularities and holography,” Adv. Theor. Math. Phys. 2 (1999) 1249–1286, arXiv:hep-th/9808014 [hep-th].
  19. D. Martelli, J. Sparks, and S.-T. Yau, “The Geometric dual of a𝑎aitalic_a-maximisation for Toric Sasaki-Einstein manifolds,” Commun. Math. Phys. 268 (2006) 39–65, arXiv:hep-th/0503183 [hep-th].
  20. D. Martelli, J. Sparks, and S.-T. Yau, “Sasaki-Einstein manifolds and volume minimisation,” Commun. Math. Phys. 280 (2008) 611–673, arXiv:hep-th/0603021 [hep-th].
  21. C. Couzens, J. P. Gauntlett, D. Martelli, and J. Sparks, “A geometric dual of c𝑐citalic_c-extremization,” JHEP 01 (2019) 212, arXiv:1810.11026 [hep-th].
  22. J. P. Gauntlett and N. Kim, “Geometries with Killing Spinors and Supersymmetric AdS Solutions,” Commun. Math. Phys. 284 (2008) 897–918, arXiv:0710.2590 [hep-th].
  23. A. Ashmore, “N = (2, 0) AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT solutions of M-theory,” JHEP 05 (2023) 101, arXiv:2209.10680 [hep-th].
  24. S. M. Hosseini, K. Hristov, and A. Zaffaroni, “Gluing gravitational blocks for AdS black holes,” JHEP 12 (2019) 168, arXiv:1909.10550 [hep-th].
  25. P. Benetti Genolini, J. M. Perez Ipiña, and J. Sparks, “Localization of the action in AdS/CFT,” JHEP 10 (2019) 252, arXiv:1906.11249 [hep-th].
  26. D. Martelli and A. Zaffaroni, “Equivariant localization and holography,” arXiv:2306.03891 [hep-th].
  27. Springer Berlin, Heidelberg, Germany, 2004.
  28. G. W. Gibbons and S. W. Hawking, “Classification of Gravitational Instanton Symmetries,” Commun. Math. Phys. 66 (1979) 291–310.
  29. I. Bah, C. Beem, N. Bobev, and B. Wecht, “Four-Dimensional SCFTs from M5-Branes,” JHEP 1206 (2012) 005, arXiv:1203.0303 [hep-th].
  30. J. M. Maldacena and C. Nunez, “Supergravity description of field theories on curved manifolds and a no go theorem,” Int.J.Mod.Phys. A16 (2001) 822–855, arXiv:hep-th/0007018 [hep-th].
  31. P. Ferrero, J. P. Gauntlett, D. Martelli, and J. Sparks, “M5-branes wrapped on a spindle,” JHEP 11 (2021) 002, arXiv:2105.13344 [hep-th].
  32. J. P. Gauntlett, E. O Colgain, and O. Varela, “Properties of some conformal field theories with M-theory duals,” JHEP 0702 (2007) 049, arXiv:hep-th/0611219 [hep-th].
  33. M. Henningson and K. Skenderis, “The Holographic Weyl anomaly,” JHEP 9807 (1998) 023, arXiv:hep-th/9806087 [hep-th].
  34. P. Ferrero, J. P. Gauntlett, and J. Sparks, “Supersymmetric spindles,” JHEP 01 (2022) 102, arXiv:2112.01543 [hep-th].
  35. A. Boido, J. P. Gauntlett, D. Martelli, and J. Sparks, “Gravitational Blocks, Spindles and GK Geometry,” Commun. Math. Phys. 403 no. 2, (2023) 917–1003, arXiv:2211.02662 [hep-th].
  36. F. Faedo and D. Martelli, “D4-branes wrapped on a spindle,” JHEP 02 (2022) 101, arXiv:2111.13660 [hep-th].
  37. I. Bah, F. Bonetti, R. Minasian, and E. Nardoni, “Anomalies of QFTs from M-theory and Holography,” JHEP 01 (2020) 125, arXiv:1910.04166 [hep-th].
  38. J. P. Gauntlett, D. Martelli, J. Sparks, and D. Waldram, “Sasaki-Einstein metrics on S2×S3superscript𝑆2superscript𝑆3S^{2}\times S^{3}italic_S start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT × italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT,” Adv. Theor. Math. Phys. 8 no. 4, (2004) 711–734, arXiv:hep-th/0403002 [hep-th].
  39. J. P. Gauntlett and S. Pakis, “The geometry of D = 11 Killing spinors,” JHEP 04 (2003) 039, arXiv:hep-th/0212008.
  40. J. P. Gauntlett, N. Kim, and D. Waldram, “M-fivebranes wrapped on supersymmetric cycles,” Phys. Rev. D63 (2001) 126001, arXiv:hep-th/0012195.
  41. E. Witten, “On flux quantization in M theory and the effective action,” J. Geom. Phys. 22 (1997) 1–13, arXiv:hep-th/9609122 [hep-th].
  42. J. D. Brown and M. Henneaux, “Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity,” Commun. Math. Phys. 104 (1986) 207–226.
  43. R. Bott and L. W. Tu, Differential Forms in Algebraic Topology. Springer New York, New York, USA, 1982.
  44. J. P. Gauntlett and N. Kim, “M five-branes wrapped on supersymmetric cycles. 2.,” Phys. Rev. D 65 (2002) 086003, arXiv:hep-th/0109039.
  45. J. J. Duistermaat and G. J. Heckman, “On the Variation in the cohomology of the symplectic form of the reduced phase space,” Invent. Math. 69 (1982) 259–268.
  46. E. Witten, “Supersymmetry and Morse theory,” J. Diff. Geom. 17 no. 4, (1982) 661–692.
  47. N. A. Nekrasov, “Seiberg-Witten prepotential from instanton counting,” Adv. Theor. Math. Phys. 7 no. 5, (2003) 831–864, arXiv:hep-th/0206161.
  48. O. Goertsches, H. Nozawa, and D. Töben, “Localization of Chern–Simons type invariants of Riemannian foliations,” Israel Journal of Mathematics 222 (2017) 867–920, arXiv:1508.07973 [math.DG].
  49. C. Bär, “Real Killing Spinors and Holonomy,” Commun. Math. Phys. 154 no. 3, (1993) 509–521.
  50. F. Bastianelli, S. Frolov, and A. A. Tseytlin, “Conformal anomaly of (2,0) tensor multiplet in six-dimensions and AdS / CFT correspondence,” JHEP 02 (2000) 013, arXiv:hep-th/0001041.
Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.