Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Deception: Reverse Penetrating the Semantic Firewall of Large Language Models (2308.11521v2)

Published 16 Aug 2023 in cs.CL, cs.AI, and cs.LG

Abstract: LLMs, such as ChatGPT, have emerged with astonishing capabilities approaching artificial general intelligence. While providing convenience for various societal needs, LLMs have also lowered the cost of generating harmful content. Consequently, LLM developers have deployed semantic-level defenses to recognize and reject prompts that may lead to inappropriate content. Unfortunately, these defenses are not foolproof, and some attackers have crafted "jailbreak" prompts that temporarily hypnotize the LLM into forgetting content defense rules and answering any improper questions. To date, there is no clear explanation of the principles behind these semantic-level attacks and defenses in both industry and academia. This paper investigates the LLM jailbreak problem and proposes an automatic jailbreak method for the first time. We propose the concept of a semantic firewall and provide three technical implementation approaches. Inspired by the attack that penetrates traditional firewalls through reverse tunnels, we introduce a "self-deception" attack that can bypass the semantic firewall by inducing LLM to generate prompts that facilitate jailbreak. We generated a total of 2,520 attack payloads in six languages (English, Russian, French, Spanish, Chinese, and Arabic) across seven virtual scenarios, targeting the three most common types of violations: violence, hate, and pornography. The experiment was conducted on two models, namely the GPT-3.5-Turbo and GPT-4. The success rates on the two models were 86.2% and 67%, while the failure rates were 4.7% and 2.2%, respectively. This highlighted the effectiveness of the proposed attack method. All experimental code and raw data will be released as open-source to inspire future research. We believe that manipulating AI behavior through carefully crafted prompts will become an important research direction in the future.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Zhenhua Wang (74 papers)
  2. Wei Xie (151 papers)
  3. Kai Chen (512 papers)
  4. Baosheng Wang (4 papers)
  5. Zhiwen Gui (2 papers)
  6. Enze Wang (4 papers)
Citations (6)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets