Papers
Topics
Authors
Recent
2000 character limit reached

SeqAR: Jailbreak LLMs with Sequential Auto-Generated Characters

Published 2 Jul 2024 in cs.CR, cs.AI, and cs.CL | (2407.01902v2)

Abstract: The widespread applications of LLMs have brought about concerns regarding their potential misuse. Although aligned with human preference data before release, LLMs remain vulnerable to various malicious attacks. In this paper, we adopt a red-teaming strategy to enhance LLM safety and introduce SeqAR, a simple yet effective framework to design jailbreak prompts automatically. The SeqAR framework generates and optimizes multiple jailbreak characters and then applies sequential jailbreak characters in a single query to bypass the guardrails of the target LLM. Different from previous work which relies on proprietary LLMs or seed jailbreak templates crafted by human expertise, SeqAR can generate and optimize the jailbreak prompt in a cold-start scenario using open-sourced LLMs without any seed jailbreak templates. Experimental results show that SeqAR achieves attack success rates of 88% and 60% in bypassing the safety alignment of GPT-3.5-1106 and GPT-4, respectively. Furthermore, we extensively evaluate the transferability of the generated templates across different LLMs and held-out malicious requests, while also exploring defense strategies against the jailbreak attack designed by SeqAR.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

GitHub