Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Split Unlearning (2308.10422v6)

Published 21 Aug 2023 in cs.CR

Abstract: We introduce Split Unlearning, a novel machine unlearning technology designed for Split Learning (SL), enabling the first-ever implementation of Sharded, Isolated, Sliced, and Aggregated (SISA) unlearning in SL frameworks. Particularly, the tight coupling between clients and the server in existing SL frameworks results in frequent bidirectional data flows and iterative training across all clients, violating the "Isolated" principle and making them struggle to implement SISA for independent and efficient unlearning. To address this, we propose SplitWiper with a new one-way-one-off propagation scheme, which leverages the inherently "Sharded" structure of SL and decouples neural signal propagation between clients and the server, enabling effective SISA unlearning even in scenarios with absent clients. We further design SplitWiper+ to enhance client label privacy, which integrates differential privacy and label expansion strategy to defend the privacy of client labels against the server and other potential adversaries. Experiments across diverse data distributions and tasks demonstrate that SplitWiper achieves 0% accuracy for unlearned labels, and 8% better accuracy for retained labels than non-SISA unlearning in SL. Moreover, the one-way-one-off propagation maintains constant overhead, reducing computational and communication costs by 99%. SplitWiper+ preserves 90% of label privacy when sharing masked labels with the server.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube