Papers
Topics
Authors
Recent
2000 character limit reached

Automated Construction of Time-Space Diagrams for Traffic Analysis Using Street-View Video Sequence (2308.06098v2)

Published 11 Aug 2023 in cs.CV

Abstract: Time-space diagrams are essential tools for analyzing traffic patterns and optimizing transportation infrastructure and traffic management strategies. Traditional data collection methods for these diagrams have limitations in terms of temporal and spatial coverage. Recent advancements in camera technology have overcome these limitations and provided extensive urban data. In this study, we propose an innovative approach to constructing time-space diagrams by utilizing street-view video sequences captured by cameras mounted on moving vehicles. Using the state-of-the-art YOLOv5, StrongSORT, and photogrammetry techniques for distance calculation, we can infer vehicle trajectories from the video data and generate time-space diagrams. To evaluate the effectiveness of our proposed method, we utilized datasets from the KITTI computer vision benchmark suite. The evaluation results demonstrate that our approach can generate trajectories from video data, although there are some errors that can be mitigated by improving the performance of the detector, tracker, and distance calculation components. In conclusion, the utilization of street-view video sequences captured by cameras mounted on moving vehicles, combined with state-of-the-art computer vision techniques, has immense potential for constructing comprehensive time-space diagrams. These diagrams offer valuable insights into traffic patterns and contribute to the design of transportation infrastructure and traffic management strategies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. P. Wang, P. Li, F. Chowdhury, L. Zhang, and X. Zhou, “A mixed integer programming formulation and scalable solution algorithms for traffic control coordination across multiple intersections based on vehicle space-time trajectories,” Transportation Research Part B: Methodological, vol. 134, pp. 266–304, 4 2020. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0191261519303844
  2. X. Peng and H. Wang, “Network-Wide Coordinated Control Based on Space-Time Trajectories,” IEEE Intelligent Transportation Systems Magazine, pp. 2–16, 2023. [Online]. Available: https://ieeexplore.ieee.org/document/10064357/
  3. M. Essa and T. Sayed, “Traffic conflict models to evaluate the safety of signalized intersections at the cycle level,” Transportation Research Part C: Emerging Technologies, vol. 89, pp. 289–302, 4 2018. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0968090X18302249
  4. L. Xing and W. Liu, “A Data Fusion Powered Bi-Directional Long Short Term Memory Model for Predicting Multi-Lane Short Term Traffic Flow,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 9, pp. 16 810–16 819, 9 2022. [Online]. Available: https://ieeexplore.ieee.org/document/9492911/
  5. M. Khajeh Hosseini and A. Talebpour, “Towards Predicting Traffic Shockwave Formation and Propagation: A Convolutional Encoder–Decoder Network,” Journal of Transportation Engineering, Part A: Systems, vol. 149, no. 4, 4 2023. [Online]. Available: https://ascelibrary.org/doi/10.1061/JTEPBS.TEENG-7209
  6. A. Nantes, D. Ngoduy, A. Bhaskar, M. Miska, and E. Chung, “Real-time traffic state estimation in urban corridors from heterogeneous data,” Transportation Research Part C: Emerging Technologies, vol. 66, pp. 99–118, 5 2016. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0968090X15002454
  7. B. T. Thodi, Z. S. Khan, S. E. Jabari, and M. Menendez, “Learning Traffic Speed Dynamics from Visualizations,” 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), vol. 2021-September, pp. 1239–1244, 5 2021. [Online]. Available: http://arxiv.org/abs/2105.01423 http://dx.doi.org/10.1109/ITSC48978.2021.9564541
  8. J. rui Zang, G. hua Song, R. ti E, J. ping Sun, X. Zhang, and L. Yu, “Experimental findings about wide moving jams: Case study in beijing,” Journal of Transportation Engineering, Part A: Systems, vol. 145, 7 2019. [Online]. Available: https://ascelibrary.org/doi/10.1061/JTEPBS.0000250
  9. C.-Y. Li, H.-J. Huang, and T.-Q. Tang, “Analysis of user equilibrium for staggered shifts in a single-entry traffic corridor with no late arrivals,” Physica A: Statistical Mechanics and its Applications, vol. 474, pp. 8–18, 5 2017. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0378437117300729
  10. X. Zhang, Y. Feng, P. Angeloudis, and Y. Demiris, “Monocular Visual Traffic Surveillance: A Review,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 9, pp. 14 148–14 165, 9 2022. [Online]. Available: https://ieeexplore.ieee.org/document/9714212/
  11. A. Sunderrajan, V. Viswanathan, W. Cai, and A. Knoll, “Traffic state estimation using floating car data,” in Procedia Computer Science, vol. 80.   Elsevier B.V., 2016, pp. 2008–2018. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1877050916310110
  12. Y. Yuan, W. Zhang, X. Yang, Y. Liu, Z. Liu, and W. Wang, “Traffic state classification and prediction based on trajectory data,” Journal of Intelligent Transportation Systems, pp. 1–15, 9 2021. [Online]. Available: https://www.tandfonline.com/doi/full/10.1080/15472450.2021.1955210
  13. M. Rahmani, H. N. Koutsopoulos, and A. Ranganathan, “Requirements and potential of gps-based floating car data for traffic management: Stockholm case study,” 13th International IEEE Conference on Intelligent Transportation Systems, pp. 730–735, 9 2010. [Online]. Available: http://ieeexplore.ieee.org/document/5625177/
  14. E. Ua-areemitr, A. Sumalee, and W. H. Lam, “Low-cost road traffic state estimation system using time-spatial image processing,” IEEE Intelligent Transportation Systems Magazine, vol. 11, pp. 69–79, 9 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8742556/
  15. F. Pletzer, R. Tusch, L. Boszormenyi, and B. Rinner, “Robust Traffic State Estimation on Smart Cameras,” in 2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance.   IEEE, 9 2012, pp. 434–439. [Online]. Available: http://ieeexplore.ieee.org/document/6328053/
  16. T. Seo, T. Kusakabe, and Y. Asakura, “Estimation of flow and density using probe vehicles with spacing measurement equipment,” Transportation Research Part C: Emerging Technologies, vol. 53, pp. 134–150, 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0968090X15000443
  17. M. Cao, W. Zhu, and M. Barth, “Mobile traffic surveillance system for dynamic roadway and vehicle traffic data integration,” 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 771–776, 10 2011. [Online]. Available: http://ieeexplore.ieee.org/document/6083096/
  18. M. Guerrieri and G. Parla, “Deep Learning and YOLOv3 Systems for Automatic Traffic Data Measurement by Moving Car Observer Technique,” Infrastructures, vol. 6, no. 9, p. 134, 9 2021. [Online]. Available: https://www.mdpi.com/2412-3811/6/9/134
  19. A. Kumar, T. Kashiyama, H. Maeda, H. Omata, and Y. Sekimoto, “Real-time citywide reconstruction of traffic flow from moving cameras on lightweight edge devices,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 192, pp. 115–129, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S092427162200199X
  20. ——, “Citywide reconstruction of traffic flow using the vehicle-mounted moving camera in the carla driving simulator,” in 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), 2022, pp. 2292–2299.
  21. A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the KITTI vision benchmark suite,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2012, pp. 3354–3361. [Online]. Available: https://ieeexplore.ieee.org/document/6248074
  22. J. Luiten and A. Hoffhues, “TrackEval,” 2020. [Online]. Available: https://github.com/JonathonLuiten/TrackEval
  23. U. Nepal and H. Eslamiat, “Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs.” Sensors (Basel, Switzerland), vol. 22, no. 2, 1 2022. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/35062425
  24. Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “Yolox: Exceeding yolo series in 2021,” p. 12, 7 2021. [Online]. Available: http://arxiv.org/abs/2107.08430
  25. Glenn Jocher, “YOLOv5,” 2022. [Online]. Available: https://github.com/ultralytics/yolov5
  26. T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollár, “Microsoft coco: Common objects in context,” 5 2014. [Online]. Available: http://arxiv.org/abs/1405.0312
  27. S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-weighted linear units for neural network function approximation in reinforcement learning,” Neural Networks, vol. 107, pp. 3–11, 11 2018. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0893608017302976
  28. Y. Du, Z. Zhao, Y. Song, Y. Zhao, F. Su, T. Gong, and H. Meng, “Strongsort: Make deepsort great again,” 2 2022. [Online]. Available: http://arxiv.org/abs/2202.13514
  29. Mikel Broström, “Real-time multi-camera multi-object tracker using YOLOv7 and StrongSORT with OSNet,” 2022. [Online]. Available: https://github.com/mikel-brostrom/Yolov7_StrongSORT_OSNet
  30. C. F. F. Karney, “Algorithms for geodesics,” Journal of Geodesy, vol. 87, no. 1, pp. 43–55, 9 2011. [Online]. Available: http://arxiv.org/abs/1109.4448 http://dx.doi.org/10.1007/s00190-012-0578-z
  31. S. Nienaber, R. Kroon, and M. Booysen, “A Comparison of Low-Cost Monocular Vision Techniques for Pothole Distance Estimation,” in 2015 IEEE Symposium Series on Computational Intelligence.   IEEE, 12 2015, pp. 419–426. [Online]. Available: http://ieeexplore.ieee.org/document/7376642/
  32. A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The KITTI dataset,” The International Journal of Robotics Research, vol. 32, no. 11, pp. 1231–1237, 9 2013. [Online]. Available: http://journals.sagepub.com/doi/10.1177/0278364913491297
  33. R. Padilla, S. L. Netto, and E. A. B. da Silva, “A Survey on Performance Metrics for Object-Detection Algorithms,” in 2020 International Conference on Systems, Signals and Image Processing (IWSSIP).   IEEE, 7 2020, pp. 237–242. [Online]. Available: https://ieeexplore.ieee.org/document/9145130/
  34. J. Luiten, A. Osep, P. Dendorfer, P. Torr, A. Geiger, L. Leal-Taixe, and B. Leibe, “HOTA: A Higher Order Metric for Evaluating Multi-Object Tracking,” International Journal of Computer Vision, 9 2020. [Online]. Available: http://arxiv.org/abs/2009.07736 http://dx.doi.org/10.1007/s11263-020-01375-2
  35. A. Osep, W. Mehner, M. Mathias, and B. Leibe, “Combined image- and world-space tracking in traffic scenes,” in 2017 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 5 2017, pp. 1988–1995. [Online]. Available: http://ieeexplore.ieee.org/document/7989230/
  36. Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo, W. Liu, and X. Wang, “ByteTrack: Multi-object Tracking by Associating Every Detection Box,” in Computer Vision – ECCV 2022, ser. Lecture Notes in Computer Science, S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner, Eds.   Cham: Springer Nature Switzerland, 2022, vol. 13682, pp. 1–21. [Online]. Available: https://link.springer.com/10.1007/978-3-031-20047-2_1
  37. S. Lee, K. Han, S. Park, and X. Yang, “Vehicle distance estimation from a monocular camera for advanced driver assistance systems,” Symmetry, vol. 14, p. 2657, 12 2022. [Online]. Available: https://www.mdpi.com/2073-8994/14/12/2657
  38. F. de Ponte Müller, “Survey on ranging sensors and cooperative techniques for relative positioning of vehicles,” Sensors, vol. 17, p. 271, 1 2017. [Online]. Available: http://www.mdpi.com/1424-8220/17/2/271
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.