Papers
Topics
Authors
Recent
2000 character limit reached

Kernel Single Proxy Control for Deterministic Confounding

Published 8 Aug 2023 in stat.ML and cs.LG | (2308.04585v4)

Abstract: We consider the problem of causal effect estimation with an unobserved confounder, where we observe a single proxy variable that is associated with the confounder. Although it has been shown that the recovery of an average causal effect is impossible in general from a single proxy variable, we show that causal recovery is possible if the outcome is generated deterministically. This generalizes existing work on causal methods with a single proxy variable to the continuous treatment setting. We propose two kernel-based methods for this setting: the first based on the two-stage regression approach, and the second based on a maximum moment restriction approach. We prove that both approaches can consistently estimate the causal effect, and we empirically demonstrate that we can successfully recover the causal effect on challenging synthetic benchmarks.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 25 likes about this paper.