Expression Prompt Collaboration Transformer for Universal Referring Video Object Segmentation (2308.04162v2)
Abstract: Audio-guided Video Object Segmentation (A-VOS) and Referring Video Object Segmentation (R-VOS) are two highly related tasks that both aim to segment specific objects from video sequences according to expression prompts. However, due to the challenges of modeling representations for different modalities, existing methods struggle to strike a balance between interaction flexibility and localization precision. In this paper, we address this problem from two perspectives: the alignment of audio and text and the deep interaction among audio, text, and visual modalities. First, we propose a universal architecture, the Expression Prompt Collaboration Transformer, herein EPCFormer. Next, we propose an Expression Alignment (EA) mechanism for audio and text. The proposed EPCFormer exploits the fact that audio and text prompts referring to the same objects are semantically equivalent by using contrastive learning for both types of expressions. Then, to facilitate deep interactions among audio, text, and visual modalities, we introduce an Expression-Visual Attention (EVA) module. The knowledge of video object segmentation in terms of the expression prompts can seamlessly transfer between the two tasks by deeply exploring complementary cues between text and audio. Experiments on well-recognized benchmarks demonstrate that our EPCFormer attains state-of-the-art results on both tasks. The source code will be made publicly available at https://github.com/lab206/EPCFormer.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.