Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Variance extrapolation method for neural-network variational Monte Carlo (2308.02471v1)

Published 4 Aug 2023 in physics.comp-ph and physics.chem-ph

Abstract: Constructing more expressive ansatz has been a primary focus for quantum Monte Carlo, aimed at more accurate \textit{ab initio} calculations. However, with more powerful ansatz, e.g. various recent developed models based on neural-network architectures, the training becomes more difficult and expensive, which may have a counterproductive effect on the accuracy of calculation. In this work, we propose to make use of the training data to perform variance extrapolation when using neural-network ansatz in variational Monte Carlo. We show that this approach can speed up the convergence and surpass the ansatz limitation to obtain an improved estimation of the energy. Moreover, variance extrapolation greatly enhances the error cancellation capability, resulting in significantly improved relative energy outcomes, which are the keys to chemistry and physics problems.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.