Papers
Topics
Authors
Recent
2000 character limit reached

SoK: Assessing the State of Applied Federated Machine Learning

Published 3 Aug 2023 in cs.LG, cs.AI, cs.CR, and cs.DC | (2308.02454v1)

Abstract: Machine Learning (ML) has shown significant potential in various applications; however, its adoption in privacy-critical domains has been limited due to concerns about data privacy. A promising solution to this issue is Federated Machine Learning (FedML), a model-to-data approach that prioritizes data privacy. By enabling ML algorithms to be applied directly to distributed data sources without sharing raw data, FedML offers enhanced privacy protections, making it suitable for privacy-critical environments. Despite its theoretical benefits, FedML has not seen widespread practical implementation. This study aims to explore the current state of applied FedML and identify the challenges hindering its practical adoption. Through a comprehensive systematic literature review, we assess 74 relevant papers to analyze the real-world applicability of FedML. Our analysis focuses on the characteristics and emerging trends of FedML implementations, as well as the motivational drivers and application domains. We also discuss the encountered challenges in integrating FedML into real-life settings. By shedding light on the existing landscape and potential obstacles, this research contributes to the further development and implementation of FedML in privacy-critical scenarios.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.