Warped quasi-asymptotically conical Calabi-Yau metrics (2308.02155v2)
Abstract: We construct many new examples of complete Calabi-Yau metrics of maximal volume growth on certain smoothings of Cartesian products of Calabi-Yau cones with smooth cross-sections. A detailed description of the geometry at infinity of these metrics is given in terms of a compactification by a manifold with corners obtained through the notion of weighted blow-up for manifolds with corners. A key analytical step in the construction of these Calabi-Yau metrics is to derive good mapping properties of the Laplacian on some suitable weighted H\"older spaces. Our methods also produce singular Calabi-Yau metrics with an isolated conical singularity modelled on a Calabi-Yau cone distinct from the tangent cone at infinity, in particular yielding a transition behavior between different Calabi-Yau cones as conjectured by Yang Li. This is used to exhibit many examples where the tangent cone at infinity does not uniquely specify a complete Calabi-Yau metric with exact K\"ahler form.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.