Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Prospects for Future Experimental Tests of Gravity with Black Hole Imaging: Spherical Symmetry (2307.16841v2)

Published 31 Jul 2023 in gr-qc and astro-ph.HE

Abstract: Astrophysical black holes (BHs) are universally expected to be described by the Kerr metric, a stationary, vacuum solution of general relativity (GR). Indeed, by imaging M87$\star$ and Sgr A$\star$ and measuring the size of their shadows, we have substantiated this hypothesis through successful null tests. Here we discuss the potential of upcoming improved imaging observations in constraining deviations of the spacetime geometry from that of a Schwarzschild BH (the nonspinning, vacuum GR solution), with a focus on the photon ring. The photon ring comprises a series of time-delayed, self-similarly nested higher-order images of the accretion flow, and is located close to the boundary of the shadow. In spherical spacetimes, these images are indexed by the number of half-loops executed around the BH by the photons that arrive in them. The delay time offers an independent shadow size estimate, enabling tests of shadow achromaticity, as predicted by GR. The image self-similarity relies on the lensing Lyapunov exponent, which is linked to photon orbit instability near the unstable circular orbit. Notably, this critical exponent, specific to the spacetime, is sensitive to the $rr-$component of the metric, and also offers insights into curvature, beyond the capabilities of currently available shadow size measurements. The Lyapunov time, a characteristic instability timescale, provides yet another probe of metric and curvature. The ratio of the Lyapunov and the delay times also yields the lensing Lyapunov exponent, providing alternative measurement pathways. Remarkably, the width of the first-order image can also serve as a discriminator of the spacetime. Each of these observables, potentially accessible in the near future, offers spacetime constraints that are orthogonal to those of the shadow size, enabling precision tests of GR.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. K. Akiyama et al. (Event Horizon Telescope), First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole, Astrophys. J. Lett. 875, L1 (2019a), arXiv:1906.11238 [astro-ph.GA] .
  2. K. Akiyama et al. (Event Horizon Telescope), First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way, Astrophys. J. Lett. 930, L12 (2022a), arXiv:2311.08680 [astro-ph.HE] .
  3. H. Falcke, F. Melia, and E. Agol, Viewing the Shadow of the Black Hole at the Galactic Center, ApJL 528, L13 (2000), arXiv:astro-ph/9912263 [astro-ph] .
  4. F. Yuan and R. Narayan, Hot Accretion Flows Around Black Holes, ARA&A 52, 529 (2014), arXiv:1401.0586 [astro-ph.HE] .
  5. K. Akiyama et al. (Event Horizon Telescope), First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring, Astrophys. J. Lett. 875, L5 (2019b), arXiv:1906.11242 [astro-ph.GA] .
  6. K. Akiyama et al. (Event Horizon Telescope), First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric, Astrophys. J. Lett. 930, L17 (2022c), arXiv:2311.09484 [astro-ph.HE] .
  7. P. V. P. Cunha and C. A. R. Herdeiro, Stationary Black Holes and Light Rings, Phys. Rev. Lett. 124, 181101 (2020), arXiv:2003.06445 [gr-qc] .
  8. R. Ghosh and S. Sarkar, Light rings of stationary spacetimes, Phys. Rev. D 104, 044019 (2021), arXiv:2107.07370 [gr-qc] .
  9. J. M. Bardeen, Timelike and null geodesics in the Kerr metric., in Black Holes (Les Astres Occlus) (1973) pp. 215–239.
  10. T. Johannsen and D. Psaltis, Testing the No-hair Theorem with Observations in the Electromagnetic Spectrum. II. Black Hole Images, ApJ 718, 446 (2010), arXiv:1005.1931 [astro-ph.HE] .
  11. K. Akiyama et al. (Event Horizon Telescope), First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole, Astrophys. J. Lett. 875, L6 (2019c), arXiv:1906.11243 [astro-ph.GA] .
  12. D. Psaltis et al. (Event Horizon Telescope), Gravitational Test Beyond the First Post-Newtonian Order with the Shadow of the M87 Black Hole, Phys. Rev. Lett. 125, 141104 (2020), arXiv:2010.01055 [gr-qc] .
  13. P. Kocherlakota et al. (Event Horizon Telescope), Constraints on black-hole charges with the 2017 EHT observations of M87*, Phys. Rev. D 103, 104047 (2021), arXiv:2105.09343 [gr-qc] .
  14. B. P. Abbott et al. (LIGO Scientific, Virgo), Tests of General Relativity with the Binary Black Hole Signals from the LIGO-Virgo Catalog GWTC-1, Phys. Rev. D 100, 104036 (2019), arXiv:1903.04467 [gr-qc] .
  15. R. Abbott et al. (LIGO Scientific, Virgo), Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog, Phys. Rev. D 103, 122002 (2021), arXiv:2010.14529 [gr-qc] .
  16. P. Kocherlakota and L. Rezzolla, Distinguishing gravitational and emission physics in black hole imaging: spherical symmetry, MNRAS 513, 1229 (2022), arXiv:2201.05641 [gr-qc] .
  17. R. Kumar, A. Kumar, and S. G. Ghosh, Testing Rotating Regular Metrics as Candidates for Astrophysical Black Holes, Astrophys. J. 896, 89 (2020), arXiv:2006.09869 [gr-qc] .
  18. S. G. Ghosh and R. K. walia, Rotating black holes in general relativity coupled to nonlinear electrodynamics, Annals Phys. 434, 168619 (2021), arXiv:2109.13031 [gr-qc] .
  19. S. Vagnozzi et al., Horizon-scale tests of gravity theories and fundamental physics from the Event Horizon Telescope image of Sagittarius A*, Class. Quantum Grav. 40, 165007 (2023), arXiv:2205.07787 [gr-qc] .
  20. E. Teo, Rotating traversable wormholes, Phys. Rev. D 58, 024014 (1998), arXiv:gr-qc/9803098 [gr-qc] .
  21. N. Sakai, H. Saida, and T. Tamaki, Gravastar shadows, Phys. Rev. D 90, 104013 (2014), arXiv:1408.6929 [gr-qc] .
  22. P. Cunha et al., Chaotic lensing around boson stars and Kerr black holes with scalar hair, Phys. Rev. D 94, 104023 (2016), arXiv:1609.01340 [gr-qc] .
  23. P. Grandclément, Light rings and light points of boson stars, Phys. Rev. D 95, 084011 (2017), arXiv:1612.07507 [gr-qc] .
  24. R. Shaikh, Shadows of rotating wormholes, Phys. Rev. D 98, 024044 (2018), arXiv:1803.11422 [gr-qc] .
  25. D. N. Solanki et al., Shadows and precession of orbits in rotating Janis-Newman-Winicour spacetime, Eur. Phys. J. C 82, 77 (2022), arXiv:2109.14937 [gr-qc] .
  26. R. M. Wald, Gravitational collapse and cosmic censorship (1997) pp. 69–85, arXiv:gr-qc/9710068 .
  27. R. Kumar and S. G. Ghosh, Rotating black holes in 4⁢D4𝐷4D4 italic_D Einstein-Gauss-Bonnet gravity and its shadow, JCAP 07, 053, arXiv:2003.08927 [gr-qc] .
  28. M. Afrin, R. Kumar, and S. G. Ghosh, Parameter estimation of hairy Kerr black holes from its shadow and constraints from M87*, Mon. Not. Roy. Astron. Soc. 504, 5927 (2021), arXiv:2103.11417 [gr-qc] .
  29. R. Kumar Walia, Observational predictions of LQG motivated polymerized black holes and constraints from Sgr A* and M87*, JCAP 03, 029, arXiv:2207.02106 [gr-qc] .
  30. S. E. Gralla, A. Lupsasca, and D. P. Marrone, The shape of the black hole photon ring: A precise test of strong-field general relativity, Phys. Rev. D 102, 124004 (2020), arXiv:2008.03879 [gr-qc] .
  31. M. Wielgus, Photon rings of spherically symmetric black holes and robust tests of non-Kerr metrics, Phys. Rev. D 104, 124058 (2021), arXiv:2109.10840 [gr-qc] .
  32. D. Ayzenberg, Testing gravity with black hole shadow subrings, Class. Quant. Grav. 39, 105009 (2022), arXiv:2202.02355 [gr-qc] .
  33. A. E. Broderick, K. Salehi, and B. Georgiev, Shadow Implications: What Does Measuring the Photon Ring Imply for Gravity?, ApJ 958, 114 (2023), arXiv:2307.15120 [astro-ph.HE] .
  34. K. Salehi, A. Broderick, and B. Georgiev, Photon Rings and Shadow Size for General Integrable Spacetimes,   (2023), arXiv:2311.01495 [gr-qc] .
  35. A. Chael, M. D. Johnson, and A. Lupsasca, Observing the Inner Shadow of a Black Hole: A Direct View of the Event Horizon, ApJ 918, 6 (2021), arXiv:2106.00683 [astro-ph.HE] .
  36. M. D. Johnson et al., Universal interferometric signatures of a black hole’s photon ring, Sci. Adv. 6, eaaz1310 (2020), arXiv:1907.04329 [astro-ph.IM] .
  37. S. E. Gralla and A. Lupsasca, Lensing by Kerr black holes, Phys. Rev. D 101, 044031 (2020), arXiv:1910.12873 [gr-qc] .
  38. W. L. Ames and K. S. Thorne, The Optical Appearance of a Star that is Collapsing Through its Gravitational Radius, ApJ 151, 659 (1968).
  39. V. Cardoso, F. Duque, and A. Foschi, Light ring and the appearance of matter accreted by black holes, Phys. Rev. D 103, 104044 (2021), arXiv:2102.07784 [gr-qc] .
  40. T. Johannsen, Systematic study of event horizons and pathologies of parametrically deformed Kerr spacetimes, Phys. Rev. D 87, 124017 (2013), arXiv:1304.7786 [gr-qc] .
  41. L. Rezzolla and A. Zhidenko, New parametrization for spherically symmetric black holes in metric theories of gravity, Phys. Rev. D 90, 084009 (2014), arXiv:1407.3086 [gr-qc] .
  42. V. Bozza and G. Scarpetta, Strong deflection limit of black hole gravitational lensing with arbitrary source distances, Phys. Rev. D 76, 083008 (2007), arXiv:0705.0246 [gr-qc] .
  43. C. Blaga, P. Blaga, and T. Harko, Jacobi and Lyapunov stability analysis of circular geodesics around a spherically symmetric dilaton black hole, Symmetry 15, 329 (2023), arXiv:2301.07678 [gr-qc] .
  44. S.-W. Wei, Topological charge and black hole photon spheres, Phys. Rev. D 102, 064039 (2020), arXiv:2006.02112 [gr-qc] .
  45. X. Ye and S.-W. Wei, Distinct topological configurations of equatorial timelike circular orbit for spherically symmetric (hairy) black holes, JCAP 07, 049, arXiv:2301.04786 [gr-qc] .
  46. K. S. Virbhadra and G. F. R. Ellis, Schwarzschild black hole lensing, Phys. Rev. D 62, 084003 (2000), arXiv:astro-ph/9904193 [astro-ph] .
  47. S. Frittelli, T. P. Kling, and E. T. Newman, Spacetime perspective of Schwarzschild lensing, Phys. Rev. D 61, 064021 (2000), arXiv:gr-qc/0001037 [gr-qc] .
  48. H. C. Ohanian, The black hole as a gravitational “lens”, Am. J. Phys. 55, 428 (1987).
  49. A. Eckart et al., The flare activity of Sagittarius A*. New coordinated mm to X-ray observations, A&A 450, 535 (2006), arXiv:astro-ph/0512440 [astro-ph] .
  50. GRAVITY Collaboration et al., Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA*, A&A 618, L10 (2018), arXiv:1810.12641 [astro-ph.GA] .
  51. P. Tiede et al., Spacetime Tomography Using the Event Horizon Telescope, ApJ 892, 132 (2020), arXiv:2002.05735 [astro-ph.HE] .
  52. I. Z. Stefanov, S. S. Yazadjiev, and G. G. Gyulchev, Connection between Black-Hole Quasinormal Modes and Lensing in the Strong Deflection Limit, Phys. Rev. Lett. 104, 251103 (2010), arXiv:1003.1609 [gr-qc] .
  53. R. P. Geroch, Multipole moments. II. Curved space, J. Math. Phys. 11, 2580 (1970).
  54. S. Vigeland, N. Yunes, and L. C. Stein, Bumpy black holes in alternative theories of gravity, Phys. Rev. D 83, 104027 (2011), arXiv:1102.3706 [gr-qc] .
  55. P. Kocherlakota and L. Rezzolla, Accurate mapping of spherically symmetric black holes in a parametrized framework, Phys. Rev. D 102, 064058 (2020), arXiv:2007.15593 [gr-qc] .
  56. R. A. Konoplya and A. Zhidenko, General parametrization of black holes: The only parameters that matter, Phys. Rev. D 101, 124004 (2020), arXiv:2001.06100 [gr-qc] .
  57. R. Arnowitt, S. Deser, and C. W. Misner, Republication of: The dynamics of general relativity, General Relativity and Gravitation 40, 1997 (2008), arXiv:gr-qc/0405109 [gr-qc] .
  58. C. M. Will, The Confrontation between General Relativity and Experiment, Living Reviews in Relativity 17, 4 (2014), arXiv:1403.7377 [gr-qc] .
  59. R. M. Wald, General Relativity (U. Chicago Press, 1984).
  60. K. Akiyama et al. (Event Horizon Telescope), First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole, Astrophys. J. Lett. 930, L14 (2022d), arXiv:2311.09479 [astro-ph.HE] .
  61. O. Porth et al. (Event Horizon Telescope), The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project, Astrophys. J. Suppl. 243, 26 (2019), arXiv:1904.04923 [astro-ph.HE] .
  62. K. Chatterjee and R. Narayan, Flux Eruption Events Drive Angular Momentum Transport in Magnetically Arrested Accretion Flows, ApJ 941, 30 (2022), arXiv:2210.08045 [astro-ph.HE] .
  63. D. Ayzenberg et al., Fundamental Physics Opportunities with the Next-Generation Event Horizon Telescope, arXiv , arXiv:2312.02130 (2023), arXiv:2312.02130 [astro-ph.HE] .
Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.