Fractional derivative description of the Bloch space (2307.16603v1)
Abstract: We establish new characterizations of the Bloch space $\mathcal{B}$ which include descriptions in terms of classical fractional derivatives. Being precise, for an analytic function $f(z)=\sum_{n=0}\infty \widehat{f}(n) zn$ in the unit disc $\mathbb{D}$, we define the fractional derivative $ D{\mu}(f)(z)=\sum\limits_{n=0}{\infty} \frac{\widehat{f}(n)}{\mu_{2n+1}} zn $ induced by a radial weight $\mu$, where $\mu_{2n+1}=\int_01 r{2n+1}\mu(r)\,dr$ are the odd moments of $\mu$. Then, we consider the space $ \mathcal{B}\mu$ of analytic functions $f$ in $\mathbb{D}$ such that $|f|{\mathcal{B}\mu}=\sup{z\in \mathbb{D}} \widehat{\mu}(z)|D\mu(f)(z)|<\infty$, where $\widehat{\mu}(z)=\int_{|z|}1 \mu(s)\,ds$. We prove that $\mathcal{B}\mu$ is continously embedded in $\mathcal{B}$ for any radial weight $\mu$, and $\mathcal{B}=\mathcal{B}\mu$ if and only if $\mu\in \mathcal{D}=\widehat{\mathcal{D}}\cap\check{\mathcal{D}}$. A radial weight $\mu \in \widehat{\mathcal{D}}$ if $\sup_{0\le r <1}\frac{\widehat{\mu}(r)}{\widehat{\mu}\left(\frac{1+r}{2}\right)}<\infty$ and a radial weight $\mu \in \check{\mathcal{D}}$ if there exist $K=K(\mu)>1$ such that $\inf_{0\le r<1}\frac{\widehat{\mu}(r)}{ \widehat{\mu}\left(1-\frac{1-r}{K}\right)}>1.$
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.