Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Hyperboloidal approach for static spherically symmetric spacetimes: a didactical introduction and applications in black-hole physics (2307.15735v2)

Published 28 Jul 2023 in gr-qc

Abstract: This work offers a didactical introduction to the calculations and geometrical properties of a static, spherically symmetric spacetime foliated by hyperboloidal time surfaces. We discuss the various degrees of freedom involved, namely the height function, responsible for introducing the hyperboloidal time coordinate, and a radial compactification function. A central outcome is the expression of the Trautman-Bondi mass in terms of the hyperboloidal metric functions. Moreover, we apply this formalism to a class of wave equations commonly used in black-hole perturbation theory. Additionally, we provide a comprehensive derivation of the hyperboloidal minimal gauge, introducing two alternative approaches within this conceptual framework: the in-out and out-in strategies. Specifically, we demonstrate that the height function in the in-out strategy follows from the well-known tortoise coordinate by changing the sign of the terms that become singular at future null infinity. Similarly, for the out-in strategy, a sign change also occurs in the tortoise coordinate's regular terms. We apply the methodology to the following spacetimes: Singularity-approaching slices in Schwarzschild, higher-dimensional black holes, black hole with matter halo, and Reissner- Nordstr\"om-de Sitter. From this heuristic study, we conjecture that the out-in strategy is best adapted for black hole geometries that account for environmental or effective quantum effects.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (129)
  1. R. Penrose. Conformal treatment of infinity. Relativity, groups and topology, pages 565–584, 1964.
  2. R. Penrose. Republication of: Conformal treatment of infinity. General Relativity and Gravitation, 43:901–922, 2011.
  3. Lisa mission.
  4. Self-force and radiation reaction in general relativity. Rept. Prog. Phys., 82(1):016904, 2019.
  5. Black Hole Perturbation Theory and Gravitational Self-Force, pages 1–119. Springer Singapore, Singapore, 2020.
  6. Black hole spectroscopy: Testing general relativity through gravitational wave observations. Class. Quant. Grav., 21:787–804, 2004.
  7. On gravitational-wave spectroscopy of massive black holes with the space interferometer LISA. Phys. Rev. D, 73:064030, 2006.
  8. Black Hole Ringdown: The Importance of Overtones. Phys. Rev. X, 9(4):041060, 2019.
  9. Black hole spectroscopy in the next decade. Phys. Rev. D, 101(6):064044, 2020.
  10. Agnostic black hole spectroscopy: quasinormal mode content of numerical relativity waveforms and limits of validity of linear perturbation theory. 2 2023.
  11. S Chandrasekhar. The mathematical theory of black holes. Oxford classic texts in the physical sciences. Oxford Univ. Press, Oxford, 2002.
  12. Quasi-normal modes of stars and black holes. Living Rev. Relativ., 2:2, 1999. http://www.livingreviews.org/lrr-1999-2.
  13. H.-P. Nollert. Quasinormal modes: The characteristic “sound” of black holes and neutron stars. Class. Quantum Grav., 16:R159, 1999.
  14. Quasinormal modes of black holes and black branes. Class. Quantum Grav., 26:163001, 2009.
  15. R. A. Konoplya and A. Zhidenko. Quasinormal modes of black holes: From astrophysics to string theory. Rev. Mod. Phys., 83:793–836, 2011.
  16. Helmut Friedrich. Cauchy problems for the conformal vacuum field equations in general relativity. Communications in Mathematical Physics, 91(4):445–472, December 1983.
  17. Jorg Frauendiener. Conformal infinity. Living Rev. Rel., 3:4, 2000.
  18. Anil Zenginoglu. A conformal approach to numerical calculations of asymptotically flat spacetimes. PhD thesis, Potsdam U., Inst. of Math., 2007.
  19. B. Schmidt. On relativistic stellar oscillations. Gravity Research Foundation essay, 1993.
  20. Anil Zenginoglu. A Geometric framework for black hole perturbations. Phys. Rev., D83:127502, 2011.
  21. Pseudospectrum and black hole quasinormal mode instability. Physical Review X, 11(3):031003, 2021.
  22. Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. 01 2005.
  23. Johannes Sjostrand. Non-self-adjoint differential operators, spectral asymptotics and random perturbations. 01 2019.
  24. S. Dyatlov and M. Zworski. Mathematical Theory of Scattering Resonances. Graduate Studies in Mathematics. American Mathematical Society, 2019.
  25. Non-Hermitian physics. Adv. Phys., 69(3):249–435, 2021.
  26. Gravitation. W. H. Freeman, San Francisco, 1973.
  27. Sean M. Carroll. Spacetime and Geometry: An Introduction to General Relativity. Cambridge University Press, 7 2019.
  28. A Complete gauge-invariant formalism for arbitrary second-order perturbations of a Schwarzschild black hole. Phys. Rev. D, 80:024021, 2009.
  29. Second Order Perturbations of Kerr Black Holes: Reconstruction of the Metric. Phys. Rev. D, 103(10):104017, 2021.
  30. Two-timescale evolution of extreme-mass-ratio inspirals: waveform generation scheme for quasicircular orbits in Schwarzschild spacetime. Phys. Rev. D, 103(6):064048, 2021.
  31. Anil Zenginoglu. A Hyperboloidal study of tail decay rates for scalar and Yang-Mills fields. Class. Quant. Grav., 25:175013, 2008.
  32. Gravitational perturbations of Schwarzschild spacetime at null infinity and the hyperboloidal initial value problem. Class. Quant. Grav., 26:035009, 2009.
  33. Spacelike matching to null infinity. Phys. Rev., D80:024044, 2009.
  34. Anil Zenginoglu. Asymptotics of black hole perturbations. Class. Quant. Grav., 27:045015, 2010.
  35. Saddle-point dynamics of a Yang-Mills field on the exterior Schwarzschild spacetime. Class. Quant. Grav., 27:175003, 2010.
  36. Numerical solution of the wave equation on particular space-times using CMC slices and scri-fixing conformal compactification. Rev. Mex. Fis., 56:456–468, 2010.
  37. Hyperboloidal evolution of test fields in three spatial dimensions. Phys. Rev., D81:124010, 2010.
  38. Anil Zenginoglu. Hyperboloidal layers for hyperbolic equations on unbounded domains. J. Comput. Phys., 230:2286–2302, 2011.
  39. Numerical investigation of the late-time Kerr tails. Class. Quant. Grav., 28:195003, 2011.
  40. Michael Jasiulek. Hyperboloidal slices for the wave equation of Kerr-Schild metrics and numerical applications. Class. Quant. Grav., 29:015008, 2012.
  41. Numerical solution of the 2+1 Teukolsky equation on a hyperboloidal and horizon penetrating foliation of Kerr and application to late-time decays. Class. Quant. Grav., 30:115013, 2013.
  42. Quasinormal modes of nearly extremal Kerr spacetimes: spectrum bifurcation and power-law ringdown. Phys. Rev., D88(4):044047, 2013.
  43. Brief note on high-multipole Kerr tails. 2013.
  44. Axisymmetric fully spectral code for hyperbolic equations. J. Comput. Phys., 276:357–379, 2014.
  45. The evolution of hyperboloidal data with the dual foliation formalism: Mathematical analysis and wave equation tests. Class. Quant. Grav., 35(5):055003, 2018.
  46. Numerical investigation of the dynamics of linear spin s𝑠sitalic_s fields on Kerr background I. Late time tails of spin s=±1,±2𝑠plus-or-minus1plus-or-minus2s=\pm 1,\pm 2italic_s = ± 1 , ± 2 fields. 2019.
  47. Conservative Evolution of Black Hole Perturbations with Time-Symmetric Numerical Methods. 10 2022.
  48. Numerical investigation of the dynamics of linear spin s𝑠sitalic_s fields on a Kerr background II: Superradiant scattering. Phys. Rev. D, 103(8):084035, 2021.
  49. Stability for linearized gravity on the Kerr spacetime. 3 2019.
  50. Price’s law and precise late-time asymptotics for subextremal Reissner-Nordström black holes. 2 2021.
  51. Late-time tails and mode coupling of linear waves on Kerr spacetimes. Adv. Math., 417:108939, 2023.
  52. Dejan Gajic. Late-time asymptotics for geometric wave equations with inverse-square potentials. J. Funct. Anal., 285:110058, 2023.
  53. Dejan Gajic and Leonhard M. A. Kehrberger. On the relation between asymptotic charges, the failure of peeling and late-time tails. Class. Quant. Grav., 39(19):195006, 2022.
  54. Spectral decomposition of black-hole perturbations on hyperboloidal slices. Phys. Rev. D, 93(12):124016, 2016.
  55. Hyperboloidal slicing approach to quasi-normal mode expansions: the Reissner-Nordström case. Phys. Rev. D, 98(12):124005, 2018.
  56. Rodrigo Panosso Macedo. Hyperboloidal framework for the Kerr spacetime. Class. Quant. Grav., 37(6):065019, 2020.
  57. Justin L. Ripley. Computing the quasinormal modes and eigenfunctions for the Teukolsky equation using horizon penetrating, hyperboloidally compactified coordinates. Class. Quant. Grav., 39(14):145009, 2022.
  58. E.W. Leaver. An analytic representation for the quasi-normal modes of Kerr black holes. Proc. R. Soc. London, Ser. A, 402:285–298, 1985.
  59. Edward W. Leaver. Quasinormal modes of Reissner-Nordström black holes. Phys. Rev. D, 41:2986–2997, May 1990.
  60. A model problem for quasinormal ringdown of asymptotically flat or extremal black holes. J. Math. Phys., 61(10):102501, 2020.
  61. Quasinormal Modes in Extremal Reissner–Nordström Spacetimes. Commun. Math. Phys., 385(3):1395–1498, 2021.
  62. Gravitational wave signatures of black hole quasi-normal mode instability. arXiv preprint arXiv:2105.03451, 2021.
  63. Pseudospectrum of Reissner-Nordström black holes: Quasinormal mode instability and universality. Phys. Rev. D, 104(8):084091, 2021.
  64. Pseudospectrum of horizonless compact objects: A bootstrap instability mechanism. Phys. Rev. D, 107(6):064012, 2023.
  65. Perturbing the perturbed: Stability of quasi-normal modes in presence of a positive cosmological constant. 4 2023.
  66. Pseudospectra of Holographic Quasinormal Modes. 7 2023.
  67. Scattering by black holes: A Simulated potential approach. Phys. Lett. A, 210:251–254, 1996.
  68. C. V. Vishveshwara. On the black hole trail … In 18th Conference of the Indian Association for General Relativity and Gravitation, pages 11–22, Madras, India, 1996. Institute of Mathematical Science Report, by Madras Univ. Inst. Math. Sci.
  69. Hans-Peter Nollert. About the significance of quasinormal modes of black holes. Phys. Rev. D, 53:4397–4402, 1996.
  70. Destabilizing the Fundamental Mode of Black Holes: The Elephant and the Flea. Phys. Rev. Lett., 128(11):111103, 2022.
  71. Stability of the fundamental quasinormal mode in time-domain observations against small perturbations. Phys. Rev. D, 106(8):084011, 2022.
  72. Quasinormal modes of Schwarzschild black holes on the real axis. Phys. Rev. D, 107(4):044012, 2023.
  73. Quasinormal mode (in)stability and strong cosmic censorship. 7 2023.
  74. Binary black hole coalescence in the extreme-mass-ratio limit: testing and improving the effective-one-body multipolar waveform. Phys. Rev. D, 83:064010, 2011.
  75. Null infinity waveforms from extreme-mass-ratio inspirals in Kerr spacetime. Phys. Rev., X1:021017, 2011.
  76. Binary black hole coalescence in the large-mass-ratio limit: the hyperboloidal layer method and waveforms at null infinity. Phys. Rev., D84:084026, 2011.
  77. Horizon-absorption effects in coalescing black-hole binaries: An effective-one-body study of the non-spinning case. Phys. Rev. D, 86:104038, 2012.
  78. A new gravitational wave generation algorithm for particle perturbations of the Kerr spacetime. Class. Quant. Grav., 31(24):245004, 2014.
  79. The antikick strikes back: recoil velocities for nearly-extremal binary black hole mergers in the test-mass limit. Phys. Rev., D90(12):124086, 2014.
  80. Asymptotic gravitational wave fluxes from a spinning particle in circular equatorial orbits around a rotating black hole. Phys. Rev., D93(4):044015, 2016.
  81. Spinning test body orbiting around a Schwarzschild black hole: Circular dynamics and gravitational-wave fluxes. Phys. Rev., D94(10):104010, 2016.
  82. Spinning test-body orbiting around a Kerr black hole: circular dynamics and gravitational-wave fluxes. Phys. Rev., D96(6):064051, 2017.
  83. Caustic echoes from a Schwarzschild black hole. Phys. Rev., D86:064030, 2012.
  84. Self-force via Green functions and worldline integration. Phys. Rev., D89(8):084021, 2014.
  85. Scalar self-force for highly eccentric equatorial orbits in Kerr spacetime. Phys. Rev., D95(8):084043, 2017.
  86. Hyperboloidal method for frequency-domain self-force calculations. Phys. Rev. D, 105(10):104033, 2022.
  87. Hyperboloidal discontinuous time-symmetric numerical algorithm with higher order jumps for gravitational self-force computations in the time domain. 6 2023.
  88. Towards exponentially-convergent simulations of extreme-mass-ratio inspirals: A time-domain solver for the scalar Teukolsky equation with singular source terms. 7 2023.
  89. Anil Zenginoglu. Hyperboloidal foliations and scri-fixing. Class. Quant. Grav., 25:145002, 2008.
  90. Eric Gourgoulhon. 3+1 formalism and bases of numerical relativity. 3 2007.
  91. Miguel Alcubierre. Introduction to 3+1 Numerical Relativity. 2008.
  92. Elements of Numerical Relativity and Relativistic Hydrodynamics. Lecture Notes in Physics. 2009.
  93. Numerical Relativity: Solving Einstein’s Equations on the Computer. 2010.
  94. Numerical Relativity: Starting from Scratch. Cambridge University Press, 2 2021.
  95. What does a strongly excited ’t Hooft-Polyakov magnetic monopole do? Phys. Rev. Lett., 92:151801, 2004.
  96. Numerical investigation of highly excited magnetic monopoles in SU(2) Yang-Mills-Higgs theory. Phys. Rev. D, 77:025019, 2008.
  97. Gravitational collapse and topology change in spherically symmetric dynamical systems. Class. Quant. Grav., 27:015001, 2010.
  98. Black hole initial data on hyperboloidal slices. Phys. Rev. D, 80:084024, 2009.
  99. Initial data for perturbed Kerr black holes on hyperboloidal slices. Class. Quant. Grav., 31:165001, 2014.
  100. Critical phenomena in the general spherically symmetric Einstein-Yang-Mills system. Phys. Rev. D, 97(4):044053, 2018.
  101. The Hyperboloidal Numerical Evolution of a Good-Bad-Ugly Wave Equation. Class. Quant. Grav., 37(3):035006, 2020.
  102. The non-linear perturbation of a black hole by gravitational waves. I. The Bondi–Sachs mass loss. Class. Quant. Grav., 38(19):194002, 2021.
  103. The non-linear perturbation of a black hole by gravitational waves. II. Quasinormal modes and the compactification problem. Class. Quant. Grav., 40(12):125006, 2023.
  104. Regularizing dual-frame generalized harmonic gauge at null infinity. Class. Quant. Grav., 40(2):025011, 2023.
  105. The non-linear perturbation of a black hole by gravitational waves. III. Newman-Penrose constants. 1 2023.
  106. Alex Vañó Viñuales. Spherically symmetric black hole spacetimes on hyperboloidal slices. Front. Appl. Math. Stat., 9:1206017, 4 2023.
  107. László B. Szabados. Quasi-Local Energy-Momentum and Angular Momentum in General Relativity. Living Rev. Rel., 12:4, 2009.
  108. J. L. Jaramillo and E. Gourgoulhon. Mass and Angular Momentum in General Relativity. Fundam. Theor. Phys., 162:87–124, 2011.
  109. Axisymmetric constant mean curvature slices in the Kerr space-time. Class. Quant. Grav., 31:075017, 2014.
  110. Vincent Moncrief. Workshop on Mathematical Issues in Numerical Relativity, ITP Santa Barbaras, 2000.
  111. The general spherically symmetric constant mean curvature foliations of the Schwarzschild solution. Phys. Rev., D80:024017, 2009.
  112. Universality of global dynamics for the cubic wave equation. Nonlinearity, 22:2473–2485, 2009.
  113. On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein’s field equations. Communications in Mathematical Physics, 149(3):587–612, October 1992.
  114. On ’hyperboloidal’ Cauchy data for vacuum Einstein equations and obstructions to smoothness of ’null infinity’. Phys. Rev. Lett., 70:2829–2832, 1993.
  115. On ’hyperboloidal’ Cauchy data for vacuum Einstein equations and obstructions to smoothness of Scri. Commun. Math. Phys., 161:533–568, 1994.
  116. Jorg Frauendiener. Calculating initial data for the conformal Einstein equations by pseudospectral methods. 6 1998.
  117. Gauge invariant perturbations of general spherically symmetric spacetimes. Sci. China Phys. Mech. Astron., 66(1):210411, 2023.
  118. Gravitational Waves from Extreme-Mass-Ratio Systems in Astrophysical Environments. Phys. Rev. Lett., 129(24):241103, 2022.
  119. Energy scales and black hole pseudospectra: the structural role of the scalar product. Class. Quant. Grav., 39(11):115010, 2022.
  120. John P Boyd. Chebyshev and Fourier spectral methods. Courier Corporation, 2001.
  121. Black holes in galaxies: Environmental impact on gravitational-wave generation and propagation. Phys. Rev. D, 105(6):L061501, 2022.
  122. A Simple Family of Analytical Trumpet Slices of the Schwarzschild Spacetime. Class. Quant. Grav., 31:117001, 2014.
  123. F. R. Tangherlini. Schwarzschild field in n dimensions and the dimensionality of space problem. Nuovo Cim., 27:636–651, 1963.
  124. Sarp Akcay. A Fast Frequency-Domain Algorithm for Gravitational Self-Force: I. Circular Orbits in Schwarzschild Spacetime. Phys. Rev. D, 83:124026, 2011.
  125. Frequency-domain algorithm for the Lorenz-gauge gravitational self-force. Phys. Rev. D, 88(10):104009, 2013.
  126. New self-force method via elliptic partial differential equations for Kerr inspiral models. Phys. Rev. D, 106(4):044056, 2022.
  127. Gravitational waves from pulsating stars: Evolving the perturbation equations for a relativistic star. Phys. Rev. D, 58:124012, 1998.
  128. Slow evolution of the metric perturbation due to a quasicircular inspiral into a Schwarzschild black hole. Phys. Rev. D, 106(8):084023, 2022.
  129. Metric perturbations of Kerr spacetime in Lorenz gauge: Circular equatorial orbits. 6 2023.
Citations (19)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube