Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Fast-oscillating random perturbations of Hamiltonian systems (2307.14597v2)

Published 27 Jul 2023 in math.PR

Abstract: We consider coupled slow-fast stochastic processes, where the averaged slow motion is given by a two-dimensional Hamiltonian system with multiple critical points. On a proper time scale, the evolution of the first integral converges to a diffusion process on the corresponding Reeb graph, with certain gluing conditions specified at the interior vertices, as in the case of additive white noise perturbations of Hamiltonian systems considered by M. Freidlin and A. Wentzell. The current paper provides the first result where the motion on a graph and the corresponding gluing conditions appear due to the averaging of a slow-fast system, with a Hamiltonian structure, on a large time scale. The result allows one to consider, for instance, long-time diffusion approximation for an oscillator with a potential with more than one well.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.