Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Strictly Low Rank Constraint Optimization -- An Asymptotically $\mathcal{O}(\frac{1}{t^2})$ Method (2307.14344v1)

Published 4 Jul 2023 in math.OC and cs.AI

Abstract: We study a class of non-convex and non-smooth problems with \textit{rank} regularization to promote sparsity in optimal solution. We propose to apply the proximal gradient descent method to solve the problem and accelerate the process with a novel support set projection operation on the singular values of the intermediate update. We show that our algorithms are able to achieve a convergence rate of $O(\frac{1}{t2})$, which is exactly same as Nesterov's optimal convergence rate for first-order methods on smooth and convex problems. Strict sparsity can be expected and the support set of singular values during each update is monotonically shrinking, which to our best knowledge, is novel in momentum-based algorithms.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.