American options in time-dependent one-factor models: Semi-analytic pricing, numerical methods and ML support (2307.13870v1)
Abstract: Semi-analytical pricing of American options in a time-dependent Ornstein-Uhlenbeck model was presented in [Carr, Itkin, 2020]. It was shown that to obtain these prices one needs to solve (numerically) a nonlinear Volterra integral equation of the second kind to find the exercise boundary (which is a function of the time only). Once this is done, the option prices follow. It was also shown that computationally this method is as efficient as the forward finite difference solver while providing better accuracy and stability. Later this approach called "the Generalized Integral transform" method has been significantly extended by the authors (also, in cooperation with Peter Carr and Alex Lipton) to various time-dependent one factor, and stochastic volatility models as applied to pricing barrier options. However, for American options, despite possible, this was not explicitly reported anywhere. In this paper our goal is to fill this gap and also discuss which numerical method (including those in machine learning) could be efficient to solve the corresponding Volterra integral equations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.