Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

An elliptic extension of the multinomial theorem (2307.12921v1)

Published 24 Jul 2023 in math.QA and math.CO

Abstract: We present a multinomial theorem for elliptic commuting variables. This result extends the author's previously obtained elliptic binomial theorem to higher rank. Two essential ingredients are a simple elliptic star-triangle relation, ensuring the uniqueness of the normal form coefficients, and, for the recursion of the closed form elliptic multinomial coefficients, the Weierstra{\ss} type $\mathsf A$ elliptic partial fraction decomposition. From our elliptic multinomial theorem we obtain, by convolution, an identity that is equivalent to Rosengren's type $\mathsf A$ extension of the Frenkel--Turaev ${}_{10}V_9$ summation, which in the trigonometric or basic limiting case reduces to Milne's type $\mathsf A$ extension of the Jackson ${}_8\phi_7$ summation. Interpreted in terms of a weighted counting of lattice paths in the integer lattice $\mathbb Zr$, our derivation of the $\mathsf A_r$ Frenkel--Turaev summation constitutes the first combinatorial proof of that fundamental identity, and, at the same time, of important special cases including the $\mathsf A_r$ Jackson summation.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.