Papers
Topics
Authors
Recent
2000 character limit reached

Batching for Green AI -- An Exploratory Study on Inference (2307.11434v1)

Published 21 Jul 2023 in cs.LG, cs.AI, cs.CV, and cs.SE

Abstract: The batch size is an essential parameter to tune during the development of new neural networks. Amongst other quality indicators, it has a large degree of influence on the model's accuracy, generalisability, training times and parallelisability. This fact is generally known and commonly studied. However, during the application phase of a deep learning model, when the model is utilised by an end-user for inference, we find that there is a disregard for the potential benefits of introducing a batch size. In this study, we examine the effect of input batching on the energy consumption and response times of five fully-trained neural networks for computer vision that were considered state-of-the-art at the time of their publication. The results suggest that batching has a significant effect on both of these metrics. Furthermore, we present a timeline of the energy efficiency and accuracy of neural networks over the past decade. We find that in general, energy consumption rises at a much steeper pace than accuracy and question the necessity of this evolution. Additionally, we highlight one particular network, ShuffleNetV2(2018), that achieved a competitive performance for its time while maintaining a much lower energy consumption. Nevertheless, we highlight that the results are model dependent.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.