Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 28 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Time-optimal multi-qubit gates: Complexity, efficient heuristic and gate-time bounds (2307.11160v2)

Published 20 Jul 2023 in quant-ph

Abstract: Multi-qubit entangling interactions arise naturally in several quantum computing platforms and promise advantages over traditional two-qubit gates. In particular, a fixed multi-qubit Ising-type interaction together with single-qubit X-gates can be used to synthesize global ZZ-gates (GZZ gates). In this work, we first show that the synthesis of such quantum gates that are time-optimal is NP-hard. Second, we provide explicit constructions of special time-optimal multi-qubit gates. They have constant gate times and can be implemented with linearly many X-gate layers. Third, we develop a heuristic algorithm with polynomial runtime for synthesizing fast multi-qubit gates. Fourth, we derive lower and upper bounds on the optimal GZZ gate-time. Based on explicit constructions of GZZ gates and numerical studies, we conjecture that any GZZ gate can be executed in a time O(n) for n qubits. Our heuristic synthesis algorithm leads to GZZ gate-times with a similar scaling, which is optimal in this sense. We expect that our efficient synthesis of fast multi-qubit gates allows for faster and, hence, also more error-robust execution of quantum algorithms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. X. Wang, A. Sørensen, and K. Mølmer, Multibit gates for quantum computing, Phys. Rev. Lett. 86, 3907 (2001), arXiv:quant-ph/0012055.
  2. F. Barahona and A. R. Mahjoub, On the cut polytope, Mathematical Programming 36, 157 (1986).
  3. M. R. Garey and D. S. Johnson, Computers and intractability, Vol. 29 (W. H. Freeman and Company, New York, 2002).
  4. M. J. Bremner, A. Montanaro, and D. J. Shepherd, Average-case complexity versus approximate simulation of commuting quantum computations, Phys. Rev. Lett. 117, 080501 (2016), arXiv:1504.07999.
  5. S. Bravyi, D. Maslov, and Y. Nam, Constant-cost implementations of Clifford operations and multiply controlled gates using global interactions, Phys. Rev. Lett. 129, 230501 (2022), arXiv:2207.08691.
  6. S. Bravyi and D. Maslov, Hadamard-free circuits expose the structure of the Clifford group, IEEE Trans. Inf. Theory 67, 4546 (2021), arXiv:2003.09412.
  7. S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University Press, 2009).
  8. E. Rich, The problem classes FP and FNP, in Automata, Computability and Complexity: Theory and Applications (Pearson Education, 2007) pp. 510–511.
  9. M. Johanning, Isospaced linear ion strings, Appl. Phys. B 122, 71 (2016).
  10. M. Laurent and S. Poljak, On a positive semidefinite relaxation of the cut polytope, Linear Algebra and its Applications 223-224, 439 (1995).
  11. M. M. Deza and M. Laurent, Geometry of Cuts and Metrics, 1st ed., Algorithms and Combinatorics (Springer Berlin Heidelberg, 2009).
  12. M. E.-Nagy, M. Laurent, and A. Varvitsiotis, Complexity of the positive semidefinite matrix completion problem with a rank constraint, Springer International Publishing , 105 (2013), arXiv:1203.6602.
  13. R. E. A. C. Paley, On orthogonal matrices, Journal of Mathematics and Physics 12, 311 (1933).
  14. A. Hedayat and W. D. Wallis, Hadamard matrices and their applications, The Annals of Statistics 6, 1184 (1978).
  15. H. Kharaghani and B. Tayfeh-Rezaie, A Hadamard matrix of order 428, Journal of Combinatorial Designs 13, 435 (2005).
  16. D. Ž. Đoković, O. Golubitsky, and I. S. Kotsireas, Some new orders of Hadamard and Skew-Hadamard matrices, Journal of Combinatorial Designs 22, 270 (2014), arXiv:1301.3671.
  17. J. Cohn, M. Motta, and R. M. Parrish, Quantum filter diagonalization with compressed double-factorized Hamiltonians, PRX Quantum 2, 040352 (2021), arXiv:2104.08957.
  18. D. A. Spielman and S.-H. Teng, Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time, Journal of the ACM 51, 385 (2004), arXiv:cs/0111050.
  19. S. Diamond and S. Boyd, CVXPY: A Python-embedded modeling language for convex optimization, J. Mach. Learn. Res. 17, 1 (2016), arXiv:1603.00943.
  20. Free Software Foundation, GLPK (GNU Linear Programming Kit) (2012), version: 0.4.6.
  21. A. T. Phillips and J. B. Rosen, A parallel algorithm for constrained concave quadratic global minimization, Mathematical Programming 42, 421 (1988).
  22. M. Dür, R. Horst, and M. Locatelli, Necessary and sufficient global optimality conditions for convex maximization revisited, Journal of Mathematical Analysis and Applications 217, 637 (1998).
  23. M. A. Hanson, Invexity and the Kuhn–Tucker Theorem, Journal of Mathematical Analysis and Applications 236, 594 (1999).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.