Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Induced log-concavity of equivariant matroid invariants (2307.10539v1)

Published 20 Jul 2023 in math.CO and math.RT

Abstract: Inspired by the notion of equivariant log-concavity, we introduce the concept of induced log-concavity for a sequence of representations of a finite group. For an equivariant matroid equipped with a symmetric group action or a finite general linear group action, we transform the problem of proving the induced log-concavity of matroid invariants to that of proving the Schur positivity of symmetric functions. We prove the induced log-concavity of the equivariant Kazhdan-Lusztig polynomials of $q$-niform matroids equipped with the action of a finite general linear group, as well as that of the equivariant Kazhdan-Lusztig polynomials of uniform matroids equipped with the action of a symmetric group. As a consequence of the former, we obtain the log-concavity of Kazhdan-Lusztig polynomials of $q$-niform matroids, thus providing further positive evidence for Elias, Proudfoot and Wakefield's log-concavity conjecture on the matroid Kazhdan-Lusztig polynomials. From the latter we obtain the log-concavity of Kazhdan-Lusztig polynomials of uniform matroids, which was recently proved by Xie and Zhang by using a computer algebra approach. We also establish the induced log-concavity of the equivariant characteristic polynomials and the equivariant inverse Kazhdan-Lusztig polynomials for $q$-niform matroids and uniform matroids.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.