Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Saliency strikes back: How filtering out high frequencies improves white-box explanations (2307.09591v4)

Published 18 Jul 2023 in cs.AI, cs.CV, and cs.LG

Abstract: Attribution methods correspond to a class of explainability methods (XAI) that aim to assess how individual inputs contribute to a model's decision-making process. We have identified a significant limitation in one type of attribution methods, known as ``white-box" methods. Although highly efficient, as we will show, these methods rely on a gradient signal that is often contaminated by high-frequency artifacts. To overcome this limitation, we introduce a new approach called "FORGrad". This simple method effectively filters out these high-frequency artifacts using optimal cut-off frequencies tailored to the unique characteristics of each model architecture. Our findings show that FORGrad consistently enhances the performance of already existing white-box methods, enabling them to compete effectively with more accurate yet computationally demanding "black-box" methods. We anticipate that our research will foster broader adoption of simpler and more efficient white-box methods for explainability, offering a better balance between faithfulness and computational efficiency.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.