Papers
Topics
Authors
Recent
Search
2000 character limit reached

Operator Guidance Informed by AI-Augmented Simulations

Published 17 Jul 2023 in cs.AI, cs.LG, physics.ao-ph, and stat.AP | (2307.08810v1)

Abstract: This paper will present a multi-fidelity, data-adaptive approach with a Long Short-Term Memory (LSTM) neural network to estimate ship response statistics in bimodal, bidirectional seas. The study will employ a fast low-fidelity, volume-based tool SimpleCode and a higher-fidelity tool known as the Large Amplitude Motion Program (LAMP). SimpleCode and LAMP data were generated by common bi-modal, bi-directional sea conditions in the North Atlantic as training data. After training an LSTM network with LAMP ship motion response data, a sample route was traversed and randomly sampled historical weather was input into SimpleCode and the LSTM network, and compared against the higher fidelity results.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.