On pseudospectrum of inhomogeneous non-Hermitian random matrices (2307.08211v2)
Abstract: Let $A$ be an $n\times n$ matrix with mutually independent centered Gaussian entries. Define \begin{align*} \sigma*:=\max\limits_{i,j\leq n}\sqrt{{\mathbb E}\,|A_{i,j}|2}, \quad \sigma:=\max\bigg(\max\limits_{j\leq n}\sqrt{{\mathbb E}\,|{\rm col}j(A)|_22}, \max\limits{i\leq n}\sqrt{{\mathbb E}\,|{\rm row}i(A)|_22}\bigg). \end{align*} Assume that $\sigma\geq n\varepsilon\,\sigma*$ for a constant $\varepsilon>0$, and that a complex number $z$ satisfies $|z|=\Omega(\sigma)$. We prove that $$ s{\min}(A-z\,{\rm Id}) \geq |z|\,\exp\bigg(-n{o(1)}\,\Big(\frac{\sqrt{n}\,\sigma*}{\sigma}\Big)2\bigg) $$ with probability $1-o(1)$. Without extra assumptions on $A$, the bound is optimal up to the $n{o(1)}$ multiple in the power of exponent. We discuss applications of this estimate in context of empirical spectral distributions of inhomogeneous non-Hermitian random matrices.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.