Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On pseudospectrum of inhomogeneous non-Hermitian random matrices (2307.08211v2)

Published 17 Jul 2023 in math.PR

Abstract: Let $A$ be an $n\times n$ matrix with mutually independent centered Gaussian entries. Define \begin{align*} \sigma*:=\max\limits_{i,j\leq n}\sqrt{{\mathbb E}\,|A_{i,j}|2}, \quad \sigma:=\max\bigg(\max\limits_{j\leq n}\sqrt{{\mathbb E}\,|{\rm col}j(A)|_22}, \max\limits{i\leq n}\sqrt{{\mathbb E}\,|{\rm row}i(A)|_22}\bigg). \end{align*} Assume that $\sigma\geq n\varepsilon\,\sigma*$ for a constant $\varepsilon>0$, and that a complex number $z$ satisfies $|z|=\Omega(\sigma)$. We prove that $$ s{\min}(A-z\,{\rm Id}) \geq |z|\,\exp\bigg(-n{o(1)}\,\Big(\frac{\sqrt{n}\,\sigma*}{\sigma}\Big)2\bigg) $$ with probability $1-o(1)$. Without extra assumptions on $A$, the bound is optimal up to the $n{o(1)}$ multiple in the power of exponent. We discuss applications of this estimate in context of empirical spectral distributions of inhomogeneous non-Hermitian random matrices.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.