Papers
Topics
Authors
Recent
2000 character limit reached

Satake's good basic invariants for finite complex reflection groups (2307.07897v1)

Published 15 Jul 2023 in math.AG, math-ph, and math.MP

Abstract: In arXiv:2004.01871 Satake introduced the notions of admissible triplets and good basic invariants for finite complex reflection groups. For irreducible finite Coxeter groups, he showed the existence and the uniqueness of good basic invariants. Moreover he showed that good basic invariants are flat in the sense of K.Saito's flat structure. He also obtained a formula for the multiplication of the Frobenius structure. In this article, we generalize his results to finite complex reflection groups. We first study the existence and the uniqueness of good basic invariants. Then for duality groups, we show that good basic invariants are flat in the sense of the natural Saito structure constructed in arXiv:1612.03643. We also give a formula for the potential vector fields of the multiplication in terms of the good basic invariants. Moreover, in the case of irreducible finite Coxeter groups, we derive a formula for the potential functions of the associated Frobenius manifolds.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.