Papers
Topics
Authors
Recent
2000 character limit reached

Linear and nonlinear transport equations with coordinate-wise increasing velocity fields

Published 11 Jul 2023 in math.AP | (2307.05819v1)

Abstract: We consider linear and nonlinear transport equations with irregular velocity fields, motivated by models coming from mean field games. The velocity fields are assumed to increase in each coordinate, and the divergence therefore fails to be absolutely continuous with respect to the Lebesgue measure in general. For such velocity fields, the well-posedness of first- and second-order linear transport equations in Lebesgue spaces is established, as well as the existence and uniqueness of regular ODE and SDE Lagrangian flows. These results are then applied to the study of certain nonconservative, nonlinear systems of transport type, which are used to model mean field games in a finite state space. A notion of weak solution is identified for which a unique minimal and maximal solution exist, which do not coincide in general. A selection-by-noise result is established for a relevant example to demonstrate that different types of noise can select any of the admissible solutions in the vanishing noise limit.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.