Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Survey From Distributed Machine Learning to Distributed Deep Learning

Published 11 Jul 2023 in cs.LG and cs.DC | (2307.05232v2)

Abstract: Artificial intelligence has made remarkable progress in handling complex tasks, thanks to advances in hardware acceleration and machine learning algorithms. However, to acquire more accurate outcomes and solve more complex issues, algorithms should be trained with more data. Processing this huge amount of data could be time-consuming and require a great deal of computation. To address these issues, distributed machine learning has been proposed, which involves distributing the data and algorithm across several machines. There has been considerable effort put into developing distributed machine learning algorithms, and different methods have been proposed so far. We divide these algorithms in classification and clustering (traditional machine learning), deep learning and deep reinforcement learning groups. Distributed deep learning has gained more attention in recent years and most of the studies have focused on this approach. Therefore, we mostly concentrate on this category. Based on the investigation of the mentioned algorithms, we highlighted the limitations that should be addressed in future research.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.