Papers
Topics
Authors
Recent
Search
2000 character limit reached

Active Linearized Sparse Neural Network-based Frequency-Constrained Unit Commitment

Published 10 Jul 2023 in eess.SY and cs.SY | (2307.04880v1)

Abstract: Conventional synchronous generators are gradually being re-placed by low-inertia inverter-based resources. Such transition introduces more complicated operation conditions, frequency deviation stability and rate-of-change-of-frequency (RoCoF) security are becoming great challenges. This paper presents an active linearized sparse neural network (ALSNN) based frequency-constrained unit commitment (ALSNN-FCUC) model to guarantee frequency stability following the worst generator outage case while ensuring operational efficiency. A generic data-driven predictor is first trained to predict maximal frequency deviation and the highest locational RoCoF simultaneously based on a high-fidelity simulation dataset, and then incorporated into ALSNN-FCUC model. Sparse computation is introduced to avoid dense matrix multiplications. An active data sampling method is proposed to maintain the bindingness of the frequency related constraints. Besides, an active ReLU linearization method is implemented to further improve the algorithm efficiency while retaining solution quality. The effectiveness of proposed ALSNN-FCUC model is demonstrated on the IEEE 24-bus system by conducting time domain simulations using PSS/E.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.