Papers
Topics
Authors
Recent
Search
2000 character limit reached

Upper bounds for volumes of generalized hyperbolic polyhedra and hyperbolic links

Published 10 Jul 2023 in math.GT | (2307.04543v1)

Abstract: A polyhedron in a three-dimensional hyperbolic space is said to be generalized if finite, ideal and truncated vertices are admitted. In virtue of Belletti's theorem (2021) the exact upper bound for volumes of generalized hyperbolic polyhedra with the same one-dimensional skeleton $G$ is equal to the volume of an ideal right-angled hyperbolic polyhedron whose one-dimensional skeleton is the medial graph for $G$. In the present paper we give the upper bounds for the volume of an arbitrary generalized hyperbolic polyhedron, where the bonds linearly depend on the number of edges. Moreover, it is shown that the bounds can be improved if the polyhedron has triangular faces and trivalent vertices. As an application there are obtained new upper bounds for the volume of the complement to the hyperbolic link having more than eight twists in a diagram.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.