Papers
Topics
Authors
Recent
2000 character limit reached

Probabilistic Test-Time Generalization by Variational Neighbor-Labeling

Published 8 Jul 2023 in cs.LG and cs.AI | (2307.04033v3)

Abstract: This paper strives for domain generalization, where models are trained exclusively on source domains before being deployed on unseen target domains. We follow the strict separation of source training and target testing, but exploit the value of the unlabeled target data itself during inference. We make three contributions. First, we propose probabilistic pseudo-labeling of target samples to generalize the source-trained model to the target domain at test time. We formulate the generalization at test time as a variational inference problem, by modeling pseudo labels as distributions, to consider the uncertainty during generalization and alleviate the misleading signal of inaccurate pseudo labels. Second, we learn variational neighbor labels that incorporate the information of neighboring target samples to generate more robust pseudo labels. Third, to learn the ability to incorporate more representative target information and generate more precise and robust variational neighbor labels, we introduce a meta-generalization stage during training to simulate the generalization procedure. Experiments on seven widely-used datasets demonstrate the benefits, abilities, and effectiveness of our proposal.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.