Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 49 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Efficient learning of the structure and parameters of local Pauli noise channels (2307.02959v1)

Published 6 Jul 2023 in quant-ph

Abstract: The unavoidable presence of noise is a crucial roadblock for the development of large-scale quantum computers and the ability to characterize quantum noise reliably and efficiently with high precision is essential to scale quantum technologies further. Although estimating an arbitrary quantum channel requires exponential resources, it is expected that physically relevant noise has some underlying local structure, for instance that errors across different qubits have a conditional independence structure. Previous works showed how it is possible to estimate Pauli noise channels with an efficient number of samples in a way that is robust to state preparation and measurement errors, albeit departing from a known conditional independence structure. We present a novel approach for learning Pauli noise channels over n qubits that addresses this shortcoming. Unlike previous works that focused on learning coefficients with a known conditional independence structure, our method learns both the coefficients and the underlying structure. We achieve our results by leveraging a groundbreaking result by Bresler for efficiently learning Gibbs measures and obtain an optimal sample complexity of O(log(n)) to learn the unknown structure of the noise acting on n qubits. This information can then be leveraged to obtain a description of the channel that is close in diamond distance from O(poly(n)) samples. Furthermore, our method is efficient both in the number of samples and postprocessing without giving up on other desirable features such as SPAM-robustness, and only requires the implementation of single qubit Cliffords. In light of this, our novel approach enables the large-scale characterization of Pauli noise in quantum devices under minimal experimental requirements and assumptions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. O. Fawzi, A. Oufkir, and D. S. França, Lower bounds on learning pauli channels (2023), arXiv:2301.09192 [quant-ph] .
  2. S. T. Flammia and J. J. Wallman, ACM Transactions on Quantum Computing 1, 1 (2020).
  3. S. T. Flammia and R. O’Donnell, Quantum 5, 549 (2021).
  4. J. J. Wallman and J. Emerson, Phys. Rev. A 94, 052325 (2016).
  5. R. Harper, S. T. Flammia, and J. J. Wallman, Nature Physics 16, 1184 (2020).
  6. R. Harper and S. T. Flammia, Learning correlated noise in a 39-qubit quantum processor (2023), arXiv:2303.00780 [quant-ph] .
  7. G. Bresler, in Proceedings of the forty-seventh annual ACM symposium on Theory of computing (2015) pp. 771–782.
  8. D. S. França and A. Hashagen, Journal of Physics A: Mathematical and Theoretical 51, 395302 (2018).
  9. E. Magesan, J. M. Gambetta, and J. Emerson, Physical Review A 85, 042311 (2012).
  10. M. Heinrich, M. Kliesch, and I. Roth, Randomized benchmarking with random quantum circuits (2023), arXiv:2212.06181 [quant-ph] .
  11. R. Levy, D. Luo, and B. K. Clark, Classical shadows for quantum process tomography on near-term quantum computers (2021), arXiv:2110.02965 [quant-ph] .
  12. J. Watrous, The theory of quantum information (Cambridge university press, 2018).
  13. J. Besag, Journal of the Royal Statistical Society: Series B (Methodological) 36, 192 (1974).
  14. L. Hamilton, F. Koehler, and A. Moitra, Advances in Neural Information Processing Systems 30 (2017).
  15. S. T. Flammia, Averaged circuit eigenvalue sampling (2021), arXiv:2108.05803 [quant-ph] .
  16. A. Montanari, Electronic Journal of Statistics 9, 10.1214/15-ejs1059 (2015).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.