Papers
Topics
Authors
Recent
2000 character limit reached

Privacy-Preserving Federated Heavy Hitter Analytics for Non-IID Data (2307.02277v2)

Published 5 Jul 2023 in cs.DC

Abstract: Federated heavy-hitter analytics involves the identification of the most frequent items within distributed data. Existing methods for this task often encounter challenges such as compromising privacy or sacrificing utility. To address these issues, we introduce a novel privacy-preserving algorithm that exploits the hierarchical structure to discover local and global heavy hitters in non-IID data by utilizing perturbation and similarity techniques. We conduct extensive evaluations on both synthetic and real datasets to validate the effectiveness of our approach. We also present FedCampus, a demonstration application to showcase the capabilities of our algorithm in analyzing population statistics.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: