Papers
Topics
Authors
Recent
2000 character limit reached

Multi Object Tracking for Predictive Collision Avoidance (2307.02161v1)

Published 5 Jul 2023 in cs.RO, cs.SY, and eess.SY

Abstract: The safe and efficient operation of Autonomous Mobile Robots (AMRs) in complex environments, such as manufacturing, logistics, and agriculture, necessitates accurate multi-object tracking and predictive collision avoidance. This paper presents algorithms and techniques for addressing these challenges using Lidar sensor data, emphasizing ensemble Kalman filter. The developed predictive collision avoidance algorithm employs the data provided by lidar sensors to track multiple objects and predict their velocities and future positions, enabling the AMR to navigate safely and effectively. A modification to the dynamic windowing approach is introduced to enhance the performance of the collision avoidance system. The overall system architecture encompasses object detection, multi-object tracking, and predictive collision avoidance control. The experimental results, obtained from both simulation and real-world data, demonstrate the effectiveness of the proposed methods in various scenarios, which lays the foundation for future research on global planners, other controllers, and the integration of additional sensors. This thesis contributes to the ongoing development of safe and efficient autonomous systems in complex and dynamic environments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. H. W. Kuhn, “The hungarian method for the assignment problem,” Naval research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.
  2. Y. Bar-Shalom, T. Fortmann, M. Scheffe et al., “Joint probabilistic data association for multiple targets in clutter,” in Proc. Conf. on Information Sciences and Systems, vol. 404409, 1980.
  3. D. Reid, “An algorithm for tracking multiple targets,” IEEE Transactions on Automatic Control, vol. 24, no. 6, pp. 843–854, 1979.
  4. N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime tracking with a deep association metric,” CoRR, vol. abs/1703.07402, 2017. [Online]. Available: http://arxiv.org/abs/1703.07402
  5. A. Sadeghian, A. Alahi, and S. Savarese, “Tracking the untrackable: Learning to track multiple cues with long-term dependencies,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 300–311.
  6. Y. Zhang, C. Wang, X. Wang, W. Zeng, and W. Liu, “A simple baseline for multi-object tracking,” CoRR, vol. abs/2004.01888, 2020. [Online]. Available: https://arxiv.org/abs/2004.01888
  7. P. Bergmann, T. Meinhardt, and L. Leal-Taixe, “Tracking without bells and whistles,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019.
  8. S. M. LaValle et al., “Rapidly-exploring random trees: A new tool for path planning,” The annual research report, 1998.
  9. J. Zhou, B. Olofsson, and E. Frisk, “Interaction-aware moving target model predictive control for autonomous vehicles motion planning,” in 2022 European Control Conference (ECC), 2022, pp. 154–161.
  10. C. Cai, C. Yang, Q. Zhu, and Y. Liang, “Collision avoidance in multi-robot systems,” in 2007 International Conference on Mechatronics and Automation, 2007, pp. 2795–2800.
  11. D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23–33, 1997.
  12. P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using velocity obstacles,” The international journal of robotics research, vol. 17, no. 7, pp. 760–772, 1998.
  13. C. Rösmann, W. Feiten, T. Wösch, F. Hoffmann, and T. Bertram, “Efficient trajectory optimization using a sparse model,” in 2013 European Conference on Mobile Robots, 2013, pp. 138–143.
  14. D. Helbing and P. Molnar, “Social force model for pedestrian dynamics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.
  15. N. Rhinehart, R. McAllister, and S. Levine, “Deep imitative models for flexible inference, planning, and control,” CoRR, vol. abs/1810.06544, 2018. [Online]. Available: http://arxiv.org/abs/1810.06544
  16. Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning,” CoRR, vol. abs/1609.07845, 2016. [Online]. Available: http://arxiv.org/abs/1609.07845
  17. R. Danescu, F. Oniga, S. Nedevschi, and M.-M. Meinecke, “Tracking multiple objects using particle filters and digital elevation maps,” in 2009 IEEE Intelligent Vehicles Symposium, 2009, pp. 88–93.
  18. D. Schulz, W. Burgard, D. Fox, and A. Cremers, “Tracking multiple moving objects with a mobile robot,” in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, 2001, pp. I–I.
  19. G. D. Tipaldi and K. Arras, “Planning problems for social robots,” in Proceedings of the International Conference on Automated Planning and Scheduling, vol. 21, 2011, pp. 339–342.
  20. L. Tai, S. Li, and M. Liu, “A deep-network solution towards model-less obstacle avoidance,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016, pp. 2759–2764.
  21. M. Dobrevski and D. Skočaj, “Adaptive dynamic window approach for local navigation,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 6930–6936.
  22. C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, “Frustum pointnets for 3d object detection from RGB-D data,” CoRR, vol. abs/1711.08488, 2017. [Online]. Available: http://arxiv.org/abs/1711.08488
  23. Z. Li, F. Wang, and N. Wang, “Lidar R-CNN: an efficient and universal 3d object detector,” CoRR, vol. abs/2103.15297, 2021. [Online]. Available: https://arxiv.org/abs/2103.15297
  24. W. Yang, Y. Chen, and Y. Su, “A double-layer model predictive control approach for collision-free lane tracking of on-road autonomous vehicles,” Actuators, vol. 12, no. 4, 2023. [Online]. Available: https://www.mdpi.com/2076-0825/12/4/169
  25. J. Liang, U. Patel, A. J. Sathyamoorthy, and D. Manocha, “Realtime collision avoidance for mobile robots in dense crowds using implicit multi-sensor fusion and deep reinforcement learning,” CoRR, vol. abs/2004.03089, 2020. [Online]. Available: https://arxiv.org/abs/2004.03089
  26. M. Missura and M. Bennewitz, “Predictive collision avoidance for the dynamic window approach,” in 2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 8620–8626.
  27. F. Sigges and M. Baum, “A nearest neighbour ensemble kalman filter for multi-object tracking,” in 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), 2017, pp. 227–232.
  28. R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),” in 2011 IEEE International Conference on Robotics and Automation, 2011, pp. 1–4.
  29. N. Koenig and A. Howard, “Design and use paradigms for Gazebo, an open-source multi-robot simulator,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), vol. 3, 2004, pp. 2149–2154.
  30. R. Vaughan, “Massively multi-robot simulation in stage,” Swarm intelligence, vol. 2, pp. 189–208, 2008.
  31. K. von Szadkowski and S. Reichel, “Phobos: A tool for creating complex robot models,” Journal of Open Source Software, vol. 5, no. 45, p. 1326, 2020. [Online]. Available: https://doi.org/10.21105/joss.01326
  32. B. Ibrahim, “Dynamic logistics warehouse,” https://github.com/belal-ibrahim/dynamic_logistics_warehouse, 2013.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.