Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Cost-aware Study of Depression Language on Social Media using Topic and Affect Contextualization (2306.17564v1)

Published 30 Jun 2023 in cs.CL

Abstract: Depression is a growing issue in society's mental health that affects all areas of life and can even lead to suicide. Fortunately, prevention programs can be effective in its treatment. In this context, this work proposes an automatic system for detecting depression on social media based on machine learning and natural language processing methods. This paper presents the following contributions: (i) an ensemble learning system that combines several types of text representations for depression detection, including recent advances in the field; (ii) a contextualization schema through topic and affective information; (iii) an analysis of models' energy consumption, establishing a trade-off between classification performance and overall computational costs. To assess the proposed models' effectiveness, a thorough evaluation is performed in two datasets that model depressive text. Experiments indicate that the proposed contextualization strategies can improve the classification and that approaches that use Transformers can improve the overall F-score by 2% while augmenting the energy cost a hundred times. Finally, this work paves the way for future energy-wise systems by considering both the performance classification and the energy consumption.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. Improving arabic cognitive distortion classification in twitter using bertopic. International Journal of Advanced Computer Science and Applications 13. doi:10.14569/IJACSA.2022.0130199.
  2. Depechemood++: A bilingual emotion lexicon built through simple yet powerful techniques. IEEE Transactions on Affective Computing 13, 496–507. doi:10.1109/TAFFC.2019.2934444.
  3. An approach for radicalization detection based on emotion signals and semantic similarity. IEEE Access 8, 17877–17891. doi:10.1109/ACCESS.2020.2967219.
  4. A semantic similarity-based perspective of affect lexicons for sentiment analysis. Knowledge-Based Systems 165, 346 – 359. URL: http://www.sciencedirect.com/science/article/pii/S0950705118305926, doi:https://doi.org/10.1016/j.knosys.2018.12.005.
  5. Consumer perceptions of telehealth for mental health or substance abuse: a twitter-based topic modeling analysis. JAMIA Open 5. doi:10.1093/jamiaopen/ooac028.
  6. Spanish Billion Words Corpus and Embeddings. URL: https://crscardellino.github.io/SBWCE/.
  7. Characterizing and predicting postpartum depression from shared facebook data, ACM. pp. 626–638. doi:10.1145/2531602.2531675.
  8. Predicting depression via social media. Proceedings of the International AAAI Conference on Web and Social Media 7, 128–137. doi:10.1609/icwsm.v7i1.14432.
  9. CodeCarbon, 2020. https://mlco2.github.io/codecarbon/ and https://github.com/mlco2/codecarbon.
  10. Unsupervised cross-lingual representation learning at scale. CoRR abs/1911.02116. URL: http://arxiv.org/abs/1911.02116, arXiv:1911.02116.
  11. Quantifying mental health signals in Twitter, in: Proceedings of the Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality, Association for Computational Linguistics, Baltimore, Maryland, USA. pp. 51--60. URL: https://aclanthology.org/W14-3207, doi:10.3115/v1/W14-3207.
  12. Discovering shifts to suicidal ideation from mental health content in social media, in: Proceedings of the 2016 CHI conference on human factors in computing systems, pp. 2098--2110.
  13. Findings of the shared task on detecting signs of depression from social media, Association for Computational Linguistics. URL: https://competitions.codalab.org/competitions/36410.
  14. Maria: Spanish language models. Procesamiento del Lenguaje Natural 68. URL: https://upcommons.upc.edu/handle/2117/367156, doi:10.26342/2022-68-3.
  15. Overview of the transformer-based models for nlp tasks, in: 2020 15th Conference on Computer Science and Information Systems (FedCSIS), IEEE. pp. 179--183.
  16. Bertopic: Neural topic modeling with a class-based tf-idf procedure. arXiv preprint arXiv:2203.05794 .
  17. Depression: the benefits of early and appropriate treatment. The American journal of managed care 13, S92--7.
  18. A review on a emotion detection and recognization from text using natural language processing.
  19. A brief survey of word embedding and its recent development, in: 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), pp. 1697--1701. doi:10.1109/IAEAC50856.2021.9390956.
  20. Data set creation and empirical analysis for detecting signs of depression from social media postings, in: Kalinathan, L., R., P., Kanmani, M., S., M. (Eds.), Computational Intelligence in Data Science, Springer International Publishing, Cham. pp. 136--151.
  21. Detecting signs of depression in tweets in spanish: Behavioral and linguistic analysis. Journal of Medical Internet Research 21. doi:10.2196/14199.
  22. Emomix+: An approach of depression detection based on emotion lexicon for mobile application. Security and Communication Networks 2022, 1--12. doi:10.1155/2022/1208846.
  23. Neural network methods for natural language processing.
  24. A unified approach to interpreting model predictions, in: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (Eds.), Advances in Neural Information Processing Systems 30. Curran Associates, Inc., pp. 4765--4774. URL: http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf.
  25. Efficient estimation of word representations in vector space. arXiv preprint arXiv: 1301.3781 .
  26. Distributed representations of words and phrases and their compositionality, in: Burges, C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K. (Eds.), Advances in Neural Information Processing Systems, Curran Associates, Inc. URL: https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf.
  27. Linguistic regularities in continuous space word representations, in: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Association for Computational Linguistics, Atlanta, Georgia. pp. 746--751. URL: https://aclanthology.org/N13-1090.
  28. Deep learning--based text classification: A comprehensive review. ACM Comput. Surv. 54. URL: https://doi.org/10.1145/3439726, doi:10.1145/3439726.
  29. #emotional tweets , 246--255URL: http://www.ark.cs.cmu.edu/GeoText.
  30. Best practices in the creation and use of emotion lexicons .
  31. Submitted to the special issue on semantic analysis in social media, computational intelligence. using hashtags to capture fine emotion categories from tweets .
  32. A review on sentiment analysis and emotion detection from text. Social Network Analysis and Mining 11, 81. doi:10.1007/s13278-021-00776-6.
  33. National Institute of Mental Health, 2023. Depression. URL: https://www.nimh.nih.gov/health/topics/depression.
  34. A new anew: Evaluation of a word list for sentiment analysis in microblogs. arXiv preprint arXiv:1103.2903 .
  35. Automatic personality assessment through social media language. Journal of personality and social psychology 108. doi:10.1037/pspp0000020.
  36. Scikit-learn: Machine learning in python. Journal of Machine Learning Research 12, 2825--2830. URL: http://jmlr.org/papers/v12/pedregosa11a.html.
  37. GloVe: Global vectors for word representation, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Association for Computational Linguistics, Doha, Qatar. pp. 1532--1543. URL: https://aclanthology.org/D14-1162, doi:10.3115/v1/D14-1162.
  38. RoBERTuito: a pre-trained language model for social media text in Spanish, in: Proceedings of the Thirteenth Language Resources and Evaluation Conference, European Language Resources Association, Marseille, France. pp. 7235--7243. URL: https://aclanthology.org/2022.lrec-1.785.
  39. Automatic depression score estimation with word embedding models. Artificial Intelligence in Medicine 132, 102380. doi:10.1016/j.artmed.2022.102380.
  40. Creación y evaluación de un diccionario marcado con emociones y ponderado para el español. Onomazein 29, 31--46. doi:10.7764/onomazein.29.5. citar para SEL lexicon emociones en español.
  41. Findings of the shared task on detecting signs of depression from social media, in: Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion, Association for Computational Linguistics, Dublin, Ireland. pp. 331--338. URL: https://aclanthology.org/2022.ltedi-1.51, doi:10.18653/v1/2022.ltedi-1.51.
  42. Predicting depression and anxiety on reddit: a multi-task learning approach, IEEE. pp. 427--435. doi:10.1109/ASONAM55673.2022.10068655.
  43. Empirical Study of Machine Learning Based Approach for Opinion Mining in Tweets. volume 7629 LNAI. pp. 1--14. URL: http://link.springer.com/10.1007/978-3-642-37807-2_1, doi:10.1007/978-3-642-37807-2_1. cited By :81.
  44. The nlp cookbook: Modern recipes for transformer based deep learning architectures. IEEE Access 9, 68675--68702. doi:10.1109/ACCESS.2021.3077350.
  45. I don’t feel so good! detecting depressive tendencies using transformer-based multimodal frameworks, in: Proceedings of the 2022 5th International Conference on Machine Learning and Natural Language Processing, Association for Computing Machinery, New York, NY, USA. p. 360–365. URL: https://doi.org/10.1145/3578741.3578817, doi:10.1145/3578741.3578817.
  46. Word embeddings and linguistic metadata at the clef 2018 tasks for early detection of depression and anorexia.
  47. Attention is all you need, in: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (Eds.), Advances in Neural Information Processing Systems, Curran Associates, Inc. URL: https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.
  48. A review of emotion sensing: categorization models and algorithms. Multimedia Tools and Applications 79, 35553--35582. doi:10.1007/s11042-019-08328-z.
  49. Transformers: State-of-the-art natural language processing, in: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, Association for Computational Linguistics, Online. pp. 38--45. URL: https://www.aclweb.org/anthology/2020.emnlp-demos.6.
  50. World Health Organization, 2023. Depressive disorder (depression). URL: https://www.who.int/news-room/fact-sheets/detail/depression.
  51. Sentiment Analysis: Mining Opinions, Sentiments, and Emotions. Computational Linguistics 42, 595--598. URL: https://doi.org/10.1162/COLI_r_00259, doi:10.1162/COLI_r_00259, arXiv:https://direct.mit.edu/coli/article-pdf/42/3/595/1806854/coli_r_00259.pdf.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.