Capturing functional connectomics using Riemannian partial least squares (2306.17371v1)
Abstract: For neurological disorders and diseases, functional and anatomical connectomes of the human brain can be used to better inform targeted interventions and treatment strategies. Functional magnetic resonance imaging (fMRI) is a non-invasive neuroimaging technique that captures spatio-temporal brain function through blood flow over time. FMRI can be used to study the functional connectome through the functional connectivity matrix; that is, Pearson's correlation matrix between time series from the regions of interest of an fMRI image. One approach to analysing functional connectivity is using partial least squares (PLS), a multivariate regression technique designed for high-dimensional predictor data. However, analysing functional connectivity with PLS ignores a key property of the functional connectivity matrix; namely, these matrices are positive definite. To account for this, we introduce a generalisation of PLS to Riemannian manifolds, called R-PLS, and apply it to symmetric positive definite matrices with the affine invariant geometry. We apply R-PLS to two functional imaging datasets: COBRE, which investigates functional differences between schizophrenic patients and healthy controls, and; ABIDE, which compares people with autism spectrum disorder and neurotypical controls. Using the variable importance in the projection statistic on the results of R-PLS, we identify key functional connections in each dataset that are well represented in the literature. Given the generality of R-PLS, this method has potential to open up new avenues for multi-model imaging analysis linking structural and functional connectomics.
- The structural and functional connectome and prediction of risk for cognitive impairment in older adults. \JournalTitleCurrent behavioral neuroscience reports 2, 234–245 (2015).
- Functional connectome mediates the association between sleep disturbance and mental health in preadolescence: a longitudinal mediation study. \JournalTitleHuman Brain Mapping 43, 2041–2050 (2022).
- Resting-State Functional Connectivity in Psychiatric Disorders. \JournalTitleThe Journal of the American Medical Association Psychiatry 72, 743–744, DOI: 10.1001/JAMAPSYCHIATRY.2015.0484 (2015).
- Connectome imaging for mapping human brain pathways. \JournalTitleMolecular psychiatry 22, 1230–1240 (2017).
- Brain magnetic resonance imaging with contrast dependent on blood oxygenation. \JournalTitleProceedings of the National Academy of Sciences of the United States of America 87, 9868–9872 (1990).
- Wold, H. Soft Modelling by Latent Variables: The Non-Linear Iterative Partial Least Squares (NIPALS) Approach. \JournalTitleJournal of Applied Probability 12, 117–142, DOI: 10.1017/S0021900200047604 (1975).
- Spatial Pattern Analysis of Functional Brain Images Using Partial Least Squares. \JournalTitleNeuroImage 3, 143–157, DOI: 10.1006/NIMG.1996.0016 (1996).
- Partial Least Squares (PLS) methods for neuroimaging: A tutorial and review. \JournalTitleNeuroImage 56, 455–475, DOI: 10.1016/j.neuroimage.2010.07.034 (2011).
- A Riemannian Framework for Tensor Computing. \JournalTitleInternational Journal of Computer Vision 66, 41–66, DOI: 10.1007/s11263-005-3222-z (2006).
- Riemannian Geometric Statistics in Medical Image Analysis (Elsevier, 2019).
- Riemannian Regression and Classification Models of Brain Networks Applied to autism. \JournalTitleConnectomics in neuroImaging : second international workshop, CNI 2018, held in conjunction with MICCAI 2018, Granada, Spain, September 20, 2018 : proceedings. CNI (Workshop) (2nd : 2018 : Granada, Spain) 11083, 78, DOI: 10.1007/978-3-030-00755-3_9 (2018).
- Chu, Y. et al. Decoding multiclass motor imagery EEG from the same upper limb by combining Riemannian geometry features and partial least squares regression. \JournalTitleJournal of Neural Engineering 17, 046029, DOI: 10.1088/1741-2552/ABA7CD (2020).
- Region Constraint Person Re-Identification via Partial Least Square on Riemannian Manifold. \JournalTitleIEEE Access 6, 17060–17066, DOI: 10.1109/ACCESS.2018.2808602 (2018).
- Partial Least Squares Regression on Symmetric Positive-Definite Matrices. \JournalTitleRevista Colombiana de Estadistica 36, 177–192 (2013).
- PLS: partial least squares projections to latent structures. \JournalTitle3D QSAR Drug Des 523–550 (1993).
- Aine, C. J. et al. Multimodal Neuroimaging in Schizophrenia: Description and Dissemination. \JournalTitleNeuroinformatics 15, 343–364, DOI: 10.1007/s12021-017-9338-9 (2017).
- LNCS 6361 - Detection of Brain Functional-Connectivity Difference in Post-stroke Patients Using Group-Level Covariance Modeling (2010).
- Craddock, C. et al. The Neuro Bureau Preprocessing Initiative: open sharing of preprocessed neuroimaging data and derivatives. \JournalTitleFrontiers in Neuroinformatics 7, DOI: 10.3389/CONF.FNINF.2013.09.00041/EVENT_ABSTRACT (2013).
- Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. \JournalTitleNeuroImage 15, 273–289, DOI: 10.1006/nimg.2001.0978 (2002).
- Multi-subject dictionary learning to segment an atlas of brain spontaneous activity. vol. 6801 LNCS, 562–573, DOI: 10.1007/978-3-642-22092-0_46 (Springer, 2011).
- Functional connections between and within brain subnetworks under resting-state. \JournalTitleScientific Reports 2020 10:1 10, 1–13, DOI: 10.1038/s41598-020-60406-7 (2020).
- The Effect of Aging on Resting State Connectivity of Predefined Networks in the Brain. \JournalTitleFrontiers in Aging Neuroscience 11, 234, DOI: 10.3389/FNAGI.2019.00234/BIBTEX (2019).
- Functional brain connectivity changes across the human life span: From fetal development to old age. \JournalTitleJournal of Neuroscience Research 99, 236–262, DOI: 10.1002/JNR.24669 (2021).
- Ferreira, L. K. et al. Aging Effects on Whole-Brain Functional Connectivity in Adults Free of Cognitive and Psychiatric Disorders. \JournalTitleCerebral Cortex 26, 3851–3865, DOI: 10.1093/CERCOR/BHV190 (2016).
- Aging and functional brain networks. \JournalTitleMolecular Psychiatry 2012 17:5 17, 549–558, DOI: 10.1038/mp.2011.81 (2011).
- Vidal-Piñiro, D. et al. Decreased Default Mode Network connectivity correlates with age-associated structural and cognitive changes. \JournalTitleFrontiers in Aging Neuroscience 6, 256, DOI: 10.3389/FNAGI.2014.00256/BIBTEX (2014).
- Abnormal cortico-cerebellar functional connectivity in autism spectrum disorder. \JournalTitleFrontiers in systems neuroscience 12, 74 (2019).
- Evaluating functional connectivity alterations in autism spectrum disorder using network-based statistics. \JournalTitleDiagnostics 8, 51 (2018).
- Assaf, M. et al. Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. \JournalTitleNeuroImage 53, 247–256, DOI: 10.1016/J.NEUROIMAGE.2010.05.067 (2010).
- Smith, R. E. et al. Sex differences in resting-state functional connectivity of the cerebellum in autism spectrum disorder. \JournalTitleFrontiers in Human Neuroscience 13, 104, DOI: 10.3389/FNHUM.2019.00104/BIBTEX (2019).
- Zhang, B. et al. Altered Functional Connectivity of Striatum Based on the Integrated Connectivity Model in First-Episode Schizophrenia. \JournalTitleFrontiers in Psychiatry 10, 756, DOI: 10.3389/FPSYT.2019.00756/BIBTEX (2019).
- Orliac, F. et al. Links among resting-state default-mode network, salience network, and symptomatology in schizophrenia. \JournalTitleSchizophrenia research 148, 74–80, DOI: 10.1016/J.SCHRES.2013.05.007 (2013).
- Duan, M. et al. Altered basal ganglia network integration in schizophrenia. \JournalTitleFrontiers in Human Neuroscience 9, 561, DOI: 10.3389/FNHUM.2015.00561/BIBTEX (2015).
- Resting-state networks in schizophrenia. \JournalTitleCurrent topics in medicinal chemistry 12, 2404–2414, DOI: 10.2174/156802612805289863 (2012).
- Functional resting-state networks are differentially affected in schizophrenia. \JournalTitleSchizophrenia Research 130, 86–93, DOI: 10.1016/J.SCHRES.2011.03.010 (2011).
- Dysfunction of Large-Scale Brain Networks in Schizophrenia: A Meta-analysis of Resting-State Functional Connectivity. \JournalTitleSchizophrenia Bulletin 44, 168–181, DOI: 10.1093/SCHBUL/SBX034 (2018).
- Yu, Q. et al. Brain connectivity networks in schizophrenia underlying resting state functional magnetic resonance imaging. \JournalTitleCurrent topics in medicinal chemistry 12, 2415, DOI: 10.2174/156802612805289890 (2012).
- Wang, H. et al. Evidence of a dissociation pattern in default mode subnetwork functional connectivity in schizophrenia. \JournalTitleScientific reports 5, 14655 (2015).
- Yan, C. et al. Spontaneous Brain Activity in the Default Mode Network Is Sensitive to Different Resting-State Conditions with Limited Cognitive Load. \JournalTitlePLOS ONE 4, e5743, DOI: 10.1371/JOURNAL.PONE.0005743 (2009).
- Han, J. et al. Eyes-Open and Eyes-Closed Resting State Network Connectivity Differences. \JournalTitleBrain Sciences 13, 122 (2023).
- Resting state connectivity differences in eyes open versus eyes closed conditions. \JournalTitleHuman Brain Mapping 40, 2488, DOI: 10.1002/HBM.24539 (2019).
- Ryan, M. Riemannian statistical techniques with applications in fMRI. Ph.D. thesis, The University of Adelaide (2023).
- Bellec, P. et al. A neuroimaging analyses kit for Matlab and Octave. 1–5 (Organization on Human Brain Mapping, 2011).
- A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. \JournalTitleNeuroImage 37, 90–101, DOI: 10.1016/j.neuroimage.2007.04.042 (2007).
- Tumor classification by partial least squares using microarray gene expression data. \JournalTitleBioinformatics 18, 39–50, DOI: 10.1093/BIOINFORMATICS/18.1.39 (2002).
- Hulland, J. Use of partial least squares (PLS) in strategic management research: A review of four recent studies. \JournalTitleStrategic Management Journal 20, 195–204, DOI: 10.1002/(SICI)1097-0266(199902)20:2 (1999).
- Partial least squares analysis of neuroimaging data: applications and advances. \JournalTitleNeuroImage 23, S250–S263, DOI: 10.1016/J.NEUROIMAGE.2004.07.020 (2004).
- Lin, F. H. et al. Multivariate analysis of neuronal interactions in the generalized partial least squares framework: simulations and empirical studies. \JournalTitleNeuroImage 20, 625–642, DOI: 10.1016/S1053-8119(03)00333-1 (2003).
- Overview and Recent Advances in Partial Least Squares. \JournalTitleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 3940 LNCS, 34–51, DOI: 10.1007/11752790_2 (2006).
- Garthwaite, P. H. An interpretation of partial least squares. \JournalTitleJournal of the American Statistical Association 89, 122–127, DOI: 10.1080/01621459.1994.10476452 (1994).
- Partial least-squares regression: a tutorial. \JournalTitleAnalytica Chimica Acta 185, 1–17, DOI: 10.1016/0003-2670(86)80028-9 (1986).
- Höskuldsson, A. PLS regression methods. \JournalTitleJournal of Chemometrics 2, 211–228, DOI: 10.1002/CEM.1180020306 (1988).
- Tenenhaus, M. La régression PLS: Théorie et pratique (Technip, 1998).
- Interpretation of variable importance in Partial Least Squares with Significance Multivariate Correlation (sMC). \JournalTitleChemometrics and Intelligent Laboratory Systems 138, 153–160, DOI: 10.1016/J.CHEMOLAB.2014.08.005 (2014).
- Variable influence on projection (VIP) for orthogonal projections to latent structures (OPLS). \JournalTitleJournal of Chemometrics 28, 623–632, DOI: 10.1002/cem.2627 (2014).
- Use of the bootstrap and permutation methods for a more robust variable importance in the projection metric for partial least squares regression. \JournalTitleAnalytica Chimica Acta 768, 49–56, DOI: 10.1016/J.ACA.2013.01.004 (2013).
- Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. \JournalTitleJournal of the Royal Statistical Society: Series B (Methodological) 57, 289–300, DOI: 10.1111/j.2517-6161.1995.tb02031.x (1995).
- Lee, J. M. Introduction to Topological Manifolds, vol. 202 (Springer New York, 2011).
- Lee, J. M. Introduction to Smooth Manifolds, vol. 218 (Springer New York, 2012).
- Lee, J. M. Introduction to Riemannian Manifolds, vol. 176 (Springer International Publishing, 2018).
- do Carmo, M. P. Riemannian Geometry (Birkhauser Boston Inc, 1992).
- Fréchet, M. Les éléments aléatoires de nature quelconque dans un espace distancié. \JournalTitleAnnales de l’institut Henri Poincaré 10, 215–310 (1948).
- Kim, H. J. et al. Canonical Correlation Analysis on Riemannian Manifolds and Its Applications. 251–267, DOI: 10.1007/978-3-319-10605-2_17 (Springer, 2014).
- Fletcher, P. T. Geodesic regression and the theory of least squares on Riemannian manifolds. \JournalTitleInternational Journal of Computer Vision 105, 171–185, DOI: 10.1007/s11263-012-0591-y (2013).
- Comparing functional connectivity matrices: A geometry-aware approach applied to participant identification. \JournalTitleNeuroImage 207, 116398, DOI: 10.1016/j.neuroimage.2019.116398 (2020).
- The Elements of Statistical Learning (Springer New York, 2009).
- R Core Team. R: A Language and Environment for Statistical Computing (2022).