Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative Modeling of Hidden Functional Brain Networks (1412.6602v2)

Published 20 Dec 2014 in stat.ML and q-bio.NC

Abstract: Functional connectivity refers to the temporal statistical relationship between spatially distinct brain regions and is usually inferred from the time series coherence/correlation in brain activity between regions of interest. In human functional brain networks, the network structure is often inferred from functional magnetic resonance imaging (fMRI) blood oxygen level dependent (BOLD) signal. Since the BOLD signal is a proxy for neuronal activity, it is of interest to learn the latent functional network structure. Additionally, despite a core set of observations about functional networks such as small-worldness, modularity, exponentially truncated degree distributions, and presence of various types of hubs, very little is known about the computational principles which can give rise to these observations. This paper introduces a Hidden Markov Random Field framework for the purpose of representing, estimating, and evaluating latent neuronal functional relationships between different brain regions using fMRI data.

Summary

We haven't generated a summary for this paper yet.