DSAM: A Deep Learning Framework for Analyzing Temporal and Spatial Dynamics in Brain Networks (2405.15805v1)
Abstract: Resting-state functional magnetic resonance imaging (rs-fMRI) is a noninvasive technique pivotal for understanding human neural mechanisms of intricate cognitive processes. Most rs-fMRI studies compute a single static functional connectivity matrix across brain regions of interest, or dynamic functional connectivity matrices with a sliding window approach. These approaches are at risk of oversimplifying brain dynamics and lack proper consideration of the goal at hand. While deep learning has gained substantial popularity for modeling complex relational data, its application to uncovering the spatiotemporal dynamics of the brain is still limited. We propose a novel interpretable deep learning framework that learns goal-specific functional connectivity matrix directly from time series and employs a specialized graph neural network for the final classification. Our model, DSAM, leverages temporal causal convolutional networks to capture the temporal dynamics in both low- and high-level feature representations, a temporal attention unit to identify important time points, a self-attention unit to construct the goal-specific connectivity matrix, and a novel variant of graph neural network to capture the spatial dynamics for downstream classification. To validate our approach, we conducted experiments on the Human Connectome Project dataset with 1075 samples to build and interpret the model for the classification of sex group, and the Adolescent Brain Cognitive Development Dataset with 8520 samples for independent testing. Compared our proposed framework with other state-of-art models, results suggested this novel approach goes beyond the assumption of a fixed connectivity matrix and provides evidence of goal-specific brain connectivity patterns, which opens up the potential to gain deeper insights into how the human brain adapts its functional connectivity specific to the task at hand.
- Tracking whole-brain connectivity dynamics in the resting state. Cerebral Cortex 24, 663–676. URL: https://doi.org/10.1093/cercor/bhs352, doi:doi:10.1093/cercor/bhs352.
- Graph-theoretical analysis of resting-state fMRI in pediatric obsessive–compulsive disorder. Journal of Affective Disorders 193, 175–184. URL: https://doi.org/10.1016/j.jad.2015.12.071, doi:doi:10.1016/j.jad.2015.12.071.
- Graph saliency maps through spectral convolutional networks: Application to sex classification with brain connectivity. URL: https://arxiv.org/abs/1806.01764, doi:doi:10.48550/ARXIV.1806.01764.
- Communication dynamics in complex brain networks. Nature Reviews Neuroscience 19, 17–33. URL: https://doi.org/10.1038/nrn.2017.149, doi:doi:10.1038/nrn.2017.149.
- A deep graph neural network architecture for modelling spatio-temporal dynamics in resting-state functional MRI data. Medical Image Analysis 79, 102471. URL: https://doi.org/10.1016/j.media.2022.102471, doi:doi:10.1016/j.media.2022.102471.
- An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. ArXiv abs/1803.01271.
- Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society B: Biological Sciences 360, 1001–1013. URL: https://doi.org/10.1098/rstb.2005.1634, doi:doi:10.1098/rstb.2005.1634.
- Sex differences in mental rotation: Top–down versus bottom–up processing. NeuroImage 32, 445–456. URL: http://dx.doi.org/10.1016/j.neuroimage.2006.03.030, doi:doi:10.1016/j.neuroimage.2006.03.030.
- Sex differences in the effects of trait anxiety and age on resting-state functional connectivities of the amygdala. Journal of Affective Disorders Reports 14, 100646. URL: http://dx.doi.org/10.1016/j.jadr.2023.100646, doi:doi:10.1016/j.jadr.2023.100646.
- Interpretable graph neural networks for connectome-based brain disorder analysis. URL: https://arxiv.org/abs/2207.00813, doi:doi:10.48550/ARXIV.2207.00813.
- Sex differences in salience network connectivity and its relationship to sensory over-responsivity in youth with autism spectrum disorder. Autism Research 13, 1489–1500. URL: http://dx.doi.org/10.1002/aur.2351, doi:doi:10.1002/aur.2351.
- Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. NeuroImage: Clinical 5, 298–308. URL: https://doi.org/10.1016/j.nicl.2014.07.003, doi:doi:10.1016/j.nicl.2014.07.003.
- Multivariate granger causality unveils directed parietal to prefrontal cortex connectivity during task-free MRI. Scientific Reports 8. URL: https://doi.org/10.1038/s41598-018-23996-x, doi:doi:10.1038/s41598-018-23996-x.
- A generalization of transformer networks to graphs. URL: https://arxiv.org/abs/2012.09699, doi:doi:10.48550/ARXIV.2012.09699.
- The WU-minn human connectome project: An overview. NeuroImage 80, 62–79. URL: https://doi.org/10.1016/j.neuroimage.2013.05.041, doi:doi:10.1016/j.neuroimage.2013.05.041.
- Confirmatory factor analysis on mental health status using abcd cohort, in: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 3540–3547. doi:doi:10.1109/BIBM52615.2021.9669378.
- Fast graph representation learning with pytorch geometric. URL: https://arxiv.org/abs/1903.02428, doi:doi:10.48550/ARXIV.1903.02428.
- The connectomics of brain disorders. Nature Reviews Neuroscience 16, 159–172. URL: https://doi.org/10.1038/nrn3901, doi:doi:10.1038/nrn3901.
- The minimal preprocessing pipelines for the human connectome project. NeuroImage 80, 105–124. URL: https://doi.org/10.1016/j.neuroimage.2013.04.127, doi:doi:10.1016/j.neuroimage.2013.04.127.
- Characterizing directed functional pathways in the visual system by multivariate nonlinear coherence of fMRI data. Scientific Reports 8. URL: https://doi.org/10.1038/s41598-018-34672-5, doi:doi:10.1038/s41598-018-34672-5.
- ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. NeuroImage 95, 232–247. URL: https://doi.org/10.1016/j.neuroimage.2014.03.034, doi:doi:10.1016/j.neuroimage.2014.03.034.
- Identification of autism spectrum disorder using deep learning and the abide dataset. NeuroImage: Clinical 17, 16–23. URL: http://dx.doi.org/10.1016/j.nicl.2017.08.017, doi:doi:10.1016/j.nicl.2017.08.017.
- FSL. NeuroImage 62, 782–790. URL: https://doi.org/10.1016/j.neuroimage.2011.09.015, doi:doi:10.1016/j.neuroimage.2011.09.015.
- Gender differences in connectome-based predictions of individualized intelligence quotient and sub-domain scores. Cerebral Cortex 30, 888–900. URL: https://doi.org/10.1093/cercor/bhz134, doi:doi:10.1093/cercor/bhz134.
- Sex differences in the default mode network with regard to autism spectrum traits: A resting state fmri study. PLOS ONE 10, e0143126. URL: http://dx.doi.org/10.1371/journal.pone.0143126, doi:doi:10.1371/journal.pone.0143126.
- Fbnetgen: Task-aware gnn-based fmri analysis via functional brain network generation. URL: https://arxiv.org/abs/2205.12465, doi:doi:10.48550/ARXIV.2205.12465.
- Brain network transformer. URL: https://arxiv.org/abs/2210.06681, doi:doi:10.48550/ARXIV.2210.06681.
- Brainnetcnn: Convolutional neural networks for brain networks; towards predicting neurodevelopment. NeuroImage 146, 1038–1049. URL: http://dx.doi.org/10.1016/j.neuroimage.2016.09.046, doi:doi:10.1016/j.neuroimage.2016.09.046.
- Learning dynamic graph representation of brain connectome with spatio-temporal attention. URL: https://arxiv.org/abs/2105.13495, doi:doi:10.48550/ARXIV.2105.13495.
- Adam: A method for stochastic optimization. URL: https://arxiv.org/abs/1412.6980, doi:doi:10.48550/ARXIV.1412.6980.
- Neural relational inference for interacting systems. URL: https://arxiv.org/abs/1802.04687, doi:doi:10.48550/ARXIV.1802.04687.
- BrainGNN: Interpretable brain graph neural network for fMRI analysis. Medical Image Analysis 74, 102233. URL: https://doi.org/10.1016/j.media.2021.102233, doi:doi:10.1016/j.media.2021.102233.
- Individual differences and time-varying features of modular brain architecture. NeuroImage 152, 94–107. URL: https://doi.org/10.1016/j.neuroimage.2017.02.066, doi:doi:10.1016/j.neuroimage.2017.02.066.
- Gender brain structural differences and interoception. Frontiers in Neuroscience 14. URL: http://dx.doi.org/10.3389/fnins.2020.586860, doi:doi:10.3389/fnins.2020.586860.
- Similarity learning with higher-order graph convolutions for brain network analysis. URL: https://arxiv.org/abs/1811.02662, doi:doi:10.48550/ARXIV.1811.02662.
- Through the looking glass: Deep interpretable dynamic directed connectivity in resting fMRI. NeuroImage 264, 119737. URL: https://doi.org/10.1016/j.neuroimage.2022.119737, doi:doi:10.1016/j.neuroimage.2022.119737.
- Pytorch: An imperative style, high-performance deep learning library. URL: https://arxiv.org/abs/1912.01703, doi:doi:10.48550/ARXIV.1912.01703.
- Sexual dimorphism in the brain correlates of adult-onset depression: A pilot structural and functional 3t mri study. Frontiers in Psychiatry 12. URL: http://dx.doi.org/10.3389/fpsyt.2021.683912, doi:doi:10.3389/fpsyt.2021.683912.
- Sex differences in orbitofrontal gray as a partial explanation for sex differences in antisocial personality. Molecular Psychiatry 16, 227–236. URL: http://dx.doi.org/10.1038/mp.2009.136, doi:doi:10.1038/mp.2009.136.
- Replication and refinement of brain age model for adolescent development URL: https://doi.org/10.1101/2023.08.16.553472, doi:doi:10.1101/2023.08.16.553472.
- Resting state functional connectivity in the default mode network: Relationships between cannabis use, gender, and cognition in adolescents and young adults. NeuroImage: Clinical 30, 102664. URL: http://dx.doi.org/10.1016/j.nicl.2021.102664, doi:doi:10.1016/j.nicl.2021.102664.
- Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers. NeuroImage 90, 449–468. URL: https://doi.org/10.1016/j.neuroimage.2013.11.046, doi:doi:10.1016/j.neuroimage.2013.11.046.
- Multimodal imaging feature extraction with reference canonical correlation analysis underlying intelligence, in: ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2071–2075. doi:doi:10.1109/ICASSP48485.2024.10448219.
- Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cerebral Cortex 28, 3095–3114. URL: https://doi.org/10.1093/cercor/bhx179, doi:doi:10.1093/cercor/bhx179.
- Sex differences in normal age trajectories of functional brain networks. Human Brain Mapping 36, 1524–1535. URL: http://dx.doi.org/10.1002/hbm.22720, doi:doi:10.1002/hbm.22720.
- Statistical challenges in “big data” human neuroimaging. Neuron 97, 263–268. URL: https://doi.org/10.1016/j.neuron.2017.12.018, doi:doi:10.1016/j.neuron.2017.12.018.
- Effective training strategy for nn models of working memory classification with limited samples, in: 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), pp. 1–4. doi:doi:10.1109/ISBI53787.2023.10230722.
- Brain networks and intelligence: A graph neural network based approach to resting state fmri data. URL: https://arxiv.org/abs/2311.03520, doi:doi:10.48550/ARXIV.2311.03520.
- Environmental and genome-wide association study on children anxiety and depression, in: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 2330–2337. doi:doi:10.1109/BIBM52615.2021.9669291.
- Cross-continental environmental and genome-wide association study on children and adolescent anxiety and depression URL: http://dx.doi.org/10.1101/2023.02.06.23285530, doi:doi:10.1101/2023.02.06.23285530.
- Gender differences in major depressive disorders: A resting state fmri study. Frontiers in Psychiatry 13. URL: http://dx.doi.org/10.3389/fpsyt.2022.1025531, doi:doi:10.3389/fpsyt.2022.1025531.
- Attention is all you need. URL: https://arxiv.org/abs/1706.03762, doi:doi:10.48550/ARXIV.1706.03762.
- Graph attention networks. URL: https://arxiv.org/abs/1710.10903, doi:doi:10.48550/ARXIV.1710.10903.
- Application of convolutional recurrent neural network for individual recognition based on resting state fMRI data. Frontiers in Neuroscience 13. URL: https://doi.org/10.3389/fnins.2019.00434, doi:doi:10.3389/fnins.2019.00434.
- Sex classification by resting state brain connectivity. Cerebral Cortex 30, 824–835. URL: https://doi.org/10.1093/cercor/bhz129, doi:doi:10.1093/cercor/bhz129.
- Inductive representation learning on temporal graphs. URL: https://arxiv.org/abs/2002.07962, doi:doi:10.48550/ARXIV.2002.07962.
- A window-less approach for capturing time-varying connectivity in fmri data reveals the presence of states with variable rates of change. Human Brain Mapping 39, 1626–1636. URL: https://doi.org/10.1002/hbm.23939, doi:doi:10.1002/hbm.23939.
- The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology 106, 1125–1165. URL: https://doi.org/10.1152/jn.00338.2011, doi:doi:10.1152/jn.00338.2011.
- Generalized cross entropy loss for training deep neural networks with noisy labels. URL: https://arxiv.org/abs/1805.07836, doi:doi:10.48550/ARXIV.1805.07836.
- Bishal Thapaliya (6 papers)
- Robyn Miller (4 papers)
- Jiayu Chen (52 papers)
- Yu-Ping Wang (48 papers)
- Esra Akbas (23 papers)
- Ram Sapkota (2 papers)
- Bhaskar Ray (3 papers)
- Pranav Suresh (2 papers)
- Santosh Ghimire (4 papers)
- Vince Calhoun (40 papers)
- Jingyu Liu (53 papers)