Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lightweight Modeling of User Context Combining Physical and Virtual Sensor Data (2306.16029v1)

Published 28 Jun 2023 in cs.LG

Abstract: The multitude of data generated by sensors available on users' mobile devices, combined with advances in machine learning techniques, support context-aware services in recognizing the current situation of a user (i.e., physical context) and optimizing the system's personalization features. However, context-awareness performances mainly depend on the accuracy of the context inference process, which is strictly tied to the availability of large-scale and labeled datasets. In this work, we present a framework developed to collect datasets containing heterogeneous sensing data derived from personal mobile devices. The framework has been used by 3 voluntary users for two weeks, generating a dataset with more than 36K samples and 1331 features. We also propose a lightweight approach to model the user context able to efficiently perform the entire reasoning process on the user mobile device. To this aim, we used six dimensionality reduction techniques in order to optimize the context classification. Experimental results on the generated dataset show that we achieve a 10x speed up and a feature reduction of more than 90% while keeping the accuracy loss less than 3%.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. doi:https://doi.org/10.1016/j.vehcom.2016.01.002. URL http://www.sciencedirect.com/science/article/pii/S2214209616000036
  2. doi:10.1007/978-1-4899-7637-6_6. URL https://doi.org/10.1007/978-1-4899-7637-6_6
  3. doi:10.3390/app7101101. URL http://www.mdpi.com/2076-3417/7/10/1101
  4. doi:10.1016/j.pmcj.2011.09.004. URL http://dx.doi.org/10.1016/j.pmcj.2011.09.004
  5. doi:10.1145/2639108.2642910. URL http://doi.acm.org/10.1145/2639108.2642910
  6. doi:10.1109/ISDA.2009.9.
  7. doi:10.1007/978-3-319-68253-2_6. URL https://doi.org/10.1007/978-3-319-68253-2_6
  8. doi:10.1145/502512.502546. URL http://doi.acm.org/10.1145/502512.502546
  9. doi:10.1109/TIT.1967.1053964.
  10. doi:10.1109/5254.708428.
  11. doi:10.1186/s13673-015-0049-7. URL https://doi.org/10.1186/s13673-015-0049-7
  12. doi:10.1007/s13748-016-0094-0. URL https://doi.org/10.1007/s13748-016-0094-0
  13. doi:https://doi.org/10.1016/j.pmcj.2016.08.010. URL http://www.sciencedirect.com/science/article/pii/S1574119216301365
  14. doi:10.1109/MCOM.2016.7509388.
  15. doi:10.1109/TMC.2017.2748133.
  16. doi:10.1145/2964284.2967233. URL http://doi.acm.org/10.1145/2964284.2967233
Citations (5)

Summary

We haven't generated a summary for this paper yet.