Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MyDigitalFootprint: an extensive context dataset for pervasive computing applications at the edge (2306.15990v1)

Published 28 Jun 2023 in cs.LG and cs.CY

Abstract: The widespread diffusion of connected smart devices has contributed to the rapid expansion and evolution of the Internet at its edge. Personal mobile devices interact with other smart objects in their surroundings, adapting behavior based on rapidly changing user context. The ability of mobile devices to process this data locally is crucial for quick adaptation. This can be achieved through a single elaboration process integrated into user applications or a middleware platform for context processing. However, the lack of public datasets considering user context complexity in the mobile environment hinders research progress. We introduce MyDigitalFootprint, a large-scale dataset comprising smartphone sensor data, physical proximity information, and Online Social Networks interactions. This dataset supports multimodal context recognition and social relationship modeling. It spans two months of measurements from 31 volunteer users in their natural environment, allowing for unrestricted behavior. Existing public datasets focus on limited context data for specific applications, while ours offers comprehensive information on the user context in the mobile environment. To demonstrate the dataset's effectiveness, we present three context-aware applications utilizing various machine learning tasks: (i) a social link prediction algorithm based on physical proximity data, (ii) daily-life activity recognition using smartphone-embedded sensors data, and (iii) a pervasive context-aware recommender system. Our dataset, with its heterogeneity of information, serves as a valuable resource to validate new research in mobile and edge computing.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. doi:https://doi.org/10.1016/j.comcom.2018.07.034. URL http://www.sciencedirect.com/science/article/pii/S0140366418305127
  2. doi:10.1109/MC.2017.9.
  3. doi:https://doi.org/10.1016/j.pmcj.2016.08.010. URL http://www.sciencedirect.com/science/article/pii/S1574119216301365
  4. doi:10.1145/3298689.3347067. URL https://doi.org/10.1145/3298689.3347067
  5. doi:10.1109/MC.2016.145.
  6. doi:10.1109/ICCSEE.2012.193.
  7. doi:10.1109/JIOT.2016.2584538.
  8. doi:10.1109/MNET.2019.1800254.
  9. doi:10.1109/COMST.2017.2745201.
  10. doi:10.14778/2733004.2733015. URL https://doi.org/10.14778/2733004.2733015
  11. doi:10.1145/2370216.2370288. URL https://doi.org/10.1145/2370216.2370288
  12. doi:https://doi.org/10.1016/j.pmcj.2013.07.008. URL http://www.sciencedirect.com/science/article/pii/S1574119213000904
  13. doi:10.3390/app7101101. URL https://www.mdpi.com/2076-3417/7/10/1101
  14. doi:10.1249/MSS.0000000000000841. URL https://doi.org/10.1249/MSS.0000000000000841
  15. doi:10.1109/MPRV.2017.3971131.
  16. doi:10.1007/s13278-016-0419-9. URL https://doi.org/10.1007/s13278-016-0419-9
  17. doi:10.3390/s150102059. URL https://www.mdpi.com/1424-8220/15/1/2059
  18. doi:10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00071.
  19. doi:10.1145/2996758.2996764. URL https://doi.org/10.1145/2996758.2996764
  20. doi:10.1145/3267305.3274178. URL https://doi.org/10.1145/3267305.3274178
  21. doi:10.1145/3277593.3277617. URL https://doi.org/10.1145/3277593.3277617
  22. doi:10.3390/s19071716. URL https://www.mdpi.com/1424-8220/19/7/1716
  23. doi:10.1109/ACCESS.2019.2958474.
  24. doi:10.1109/TPDS.2019.2950937.
  25. doi:10.1109/SEC.2018.00033.
  26. doi:10.1109/TBIOM.2019.2905868.
  27. doi:10.3390/s18041219. URL https://www.mdpi.com/1424-8220/18/4/1219
  28. doi:10.3390/s19112466. URL https://www.mdpi.com/1424-8220/19/11/2466
  29. doi:10.1109/ACCESS.2019.2894809.
  30. doi:10.1145/2809695.2809718. URL https://doi.org/10.1145/2809695.2809718
  31. doi:10.3390/s19020396. URL https://www.mdpi.com/1424-8220/19/2/396
  32. doi:10.1007/978-1-4419-8462-3_9. URL https://doi.org/10.1007/978-1-4419-8462-3_9
  33. arXiv:https://doi.org/10.1146/annurev.soc.27.1.415, doi:10.1146/annurev.soc.27.1.415. URL https://doi.org/10.1146/annurev.soc.27.1.415
  34. arXiv:1901.09691.
  35. arXiv:2002.11522.
  36. doi:10.1145/2623330.2623732. URL https://doi.org/10.1145/2623330.2623732
  37. doi:10.1145/2939672.2939754. URL https://doi.org/10.1145/2939672.2939754
  38. arXiv:1301.3781.
  39. arXiv:1412.6980.
  40. arXiv:1702.05659.
  41. arXiv:1502.03167.
  42. doi:https://doi.org/10.1016/j.patrec.2005.10.010. URL http://www.sciencedirect.com/science/article/pii/S016786550500303X
  43. doi:https://doi.org/10.1016/j.eswa.2014.05.049. URL http://www.sciencedirect.com/science/article/pii/S0957417414003364
  44. doi:10.1145/3393672.3398640. URL https://doi.org/10.1145/3393672.3398640
  45. doi:https://doi.org/10.1016/j.bbe.2017.04.004. URL http://www.sciencedirect.com/science/article/pii/S020852161630314X
  46. doi:10.1109/COMST.2014.2381246.
  47. doi:10.1007/s13748-016-0094-0. URL https://doi.org/10.1007/s13748-016-0094-0
  48. doi:https://doi.org/10.1016/S0031-3203(96)00142-2. URL http://www.sciencedirect.com/science/article/pii/S0031320396001422
  49. doi:10.1109/TNNLS.2016.2610465.
  50. doi:https://doi.org/10.1016/j.cosrev.2019.01.001. URL http://www.sciencedirect.com/science/article/pii/S1574013718302120
  51. doi:10.3390/app7121211. URL http://www.mdpi.com/2076-3417/7/12/1211
  52. doi:10.1109/TIT.1967.1053964.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Mattia Giovanni Campana (13 papers)
  2. Franca Delmastro (18 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.