Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

COMPASS: Unsupervised and Online Clustering of Complex Human Activities from Smartphone Sensors (2306.15437v1)

Published 27 Jun 2023 in cs.LG

Abstract: Modern mobile devices are able to provide context-aware and personalized services to the users, by leveraging on their sensing capabilities to infer the activity and situation in which a person is currently involved. Current solutions for context-recognition rely on annotated data and experts’ knowledge to predict the user context. In addition, their prediction ability is strongly limited to the set of situations considered during the model training or definition. However, in a mobile environment, the user context continuously evolves, and it cannot be merely restricted to a set of predefined classes. To overcome these limitations, we propose COMPASS, a novel unsupervised and online clustering algorithm aimed at identifying the user context in mobile environments based on the stream of high-dimensional data generated by smartphone sensors. COMPASScan distinguish an arbitrary number of user’s contexts from the sensors’ data, without defining a priori the collection of expected situations. This key feature makes it a general-purpose solution to provide context-aware features to mobile devices, supporting a broad set of applications. Experimental results on 18 synthetic and 2 real-world datasets show that COMPASS correctly identifies the user context from the sensors’ data stream, and outperforms the state-of-the-art solutions in terms of both clusters configuration and purity. Eventually, we evaluate its performances in terms of execution time and the results show that COMPASS can process 1000 high-dimensional samples in less than 20 seconds, while the reference solutions require about 60 minutes to evaluate the entire dataset. Keywords: Context-awareness, Unsupervised Machine Learning, Online Clustering, Mobile Computing

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. Activity recognition with evolving data streams: A review. ACM Computing Surveys (CSUR), 51, 71.
  2. Edge computing for smart health: Context-aware approaches, opportunities, and challenges. IEEE Network, 33, 196–203. doi:10.1109/MNET.2019.1800083.
  3. A framework for clustering evolving data streams. In Proceedings of the 29th International Conference on Very Large Data Bases - Volume 29 VLDB ’03 (pp. 81–92). VLDB Endowment. URL: http://dl.acm.org/citation.cfm?id=1315451.1315460.
  4. On density-based data streams clustering algorithms: A survey. Journal of Computer Science and Technology, 29, 116–141. URL: https://doi.org/10.1007/s11390-014-1416-y. doi:10.1007/s11390-014-1416-y.
  5. Lightweight modeling of user context combining physical and virtual sensor data. In Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers UbiComp ’18 (pp. 1309–1320). New York, NY, USA: ACM. URL: http://doi.acm.org/10.1145/3267305.3274178. doi:10.1145/3267305.3274178.
  6. Recommender systems for online and mobile social networks: A survey. Online Social Networks and Media, 3-4, 75 – 97. URL: http://www.sciencedirect.com/science/article/pii/S2468696417300885. doi:https://doi.org/10.1016/j.osnem.2017.10.005.
  7. Density-based clustering over an evolving data stream with noise. In Proceedings of the 2006 SIAM International Conference on Data Mining (pp. 328–339). URL: https://epubs.siam.org/doi/abs/10.1137/1.9781611972764.29. doi:10.1137/1.9781611972764.29. arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611972764.29.
  8. An empirical comparison of stream clustering algorithms. In Proceedings of the Computing Frontiers Conference CF’17 (pp. 361--366). New York, NY, USA: ACM. URL: http://doi.acm.org/10.1145/3075564.3078887. doi:10.1145/3075564.3078887.
  9. Optimizing data stream representation: An extensive survey on stream clustering algorithms. Business & Information Systems Engineering, 61, 277--297. URL: https://doi.org/10.1007/s12599-019-00576-5. doi:10.1007/s12599-019-00576-5.
  10. A survey on feature selection methods. Computers & Electrical Engineering, 40, 16 -- 28. URL: http://www.sciencedirect.com/science/article/pii/S0045790613003066. doi:https://doi.org/10.1016/j.compeleceng.2013.11.024. 40th-year commemorative issue.
  11. Flopcoin: A cryptocurrency for computation offloading. IEEE Transactions on Mobile Computing, 17, 1062--1075. doi:10.1109/TMC.2017.2748133.
  12. Data security and privacy protection issues in cloud computing. In 2012 International Conference on Computer Science and Electronics Engineering (pp. 647--651). volume 1. doi:10.1109/ICCSEE.2012.193.
  13. Applying ontology techniques to develop a medication history search and alert system in department of nuclear medicine. Journal of Medical Systems, 36, 737--746. URL: https://doi.org/10.1007/s10916-010-9541-9. doi:10.1007/s10916-010-9541-9.
  14. Density-based clustering for real-time stream data. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD ’07 (pp. 133--142). New York, NY, USA: ACM. URL: http://doi.acm.org/10.1145/1281192.1281210. doi:10.1145/1281192.1281210.
  15. newnectar: Collaborative active learning for knowledge-based probabilistic activity recognition. Pervasive and Mobile Computing, 56, 88 -- 105. URL: http://www.sciencedirect.com/science/article/pii/S1574119218303572. doi:https://doi.org/10.1016/j.pmcj.2019.04.006.
  16. Toward personalized and context-aware prompting for smartphone-based intervention. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 6010--6013). doi:10.1109/EMBC.2016.7592098.
  17. Introduction to stream: An extensible framework for data stream clustering research with R. Journal of Statistical Software, 76, 1--50. doi:10.18637/jss.v076.i14.
  18. Clustering data streams based on shared density between micro-clusters. IEEE Transactions on Knowledge and Data Engineering, 28, 1449--1461. doi:10.1109/TKDE.2016.2522412.
  19. Multiobjective clustering with automatic determination of the number of clusters. Technical Report, .
  20. Unsupervised classification of smartphone activities signals using wavelet packet transform and half-cosine fuzzy clustering. In 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 1--6). doi:10.1109/FUZZ-IEEE.2017.8015566.
  21. Human activity recognition using triaxial acceleration data from smartphone and ensemble learning. In 2017 13th International Conference on Signal-Image Technology Internet-Based Systems (SITIS) (pp. 408--412). doi:10.1109/SITIS.2017.73.
  22. Comparing partitions. Journal of classification, 2, 193--218.
  23. Fully online clustering of evolving data streams into arbitrarily shaped clusters. Information Sciences, 382-383, 96 -- 114. URL: http://www.sciencedirect.com/science/article/pii/S0020025516319247. doi:https://doi.org/10.1016/j.ins.2016.12.004.
  24. Performance evaluation of k-means clustering algorithm with various distance metrics. In 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES) (pp. 1--4). doi:10.1109/ICPEICES.2016.7853264.
  25. A survey of feature selection and feature extraction techniques in machine learning. In 2014 Science and Information Conference (pp. 372--378). doi:10.1109/SAI.2014.6918213.
  26. Location-based service using ontology-based semantic queries: A study with a focus on indoor activities in a university context. Computers, Environment and Urban Systems, 62, 41 -- 52. URL: http://www.sciencedirect.com/science/article/pii/S0198971516301259. doi:https://doi.org/10.1016/j.compenvurbsys.2016.10.009.
  27. Making smartphone service recommendations by predicting users’ intentions: A context-aware approach. Information Sciences, 277, 21 -- 35. URL: http://www.sciencedirect.com/science/article/pii/S0020025514004873. doi:https://doi.org/10.1016/j.ins.2014.04.033.
  28. A context-aware eeg headset system for early detection of driver drowsiness. Sensors, 15, 20873--20893. URL: https://www.mdpi.com/1424-8220/15/8/20873. doi:10.3390/s150820873.
  29. Modeling and discovering human behavior from smartphone sensing life-log data for identification purpose. Human-centric Computing and Information Sciences, 5, 31. URL: https://doi.org/10.1186/s13673-015-0049-7. doi:10.1186/s13673-015-0049-7.
  30. Resolution mechanism model for heterogeneous systems in smart home environment. In 2018 IEEE 7th Global Conference on Consumer Electronics (GCCE) (pp. 574--575). doi:10.1109/GCCE.2018.8574779.
  31. Physical activity recognition by smartphones, a survey. Biocybernetics and Biomedical Engineering, 37, 388 -- 400. URL: http://www.sciencedirect.com/science/article/pii/S020852161630314X. doi:https://doi.org/10.1016/j.bbe.2017.04.004.
  32. Context aware virtual assistant with case-based conflict resolution in multi-user smart home environment. In 2018 International Conference on Computing and Network Communications (CoCoNet) (pp. 36--44). doi:10.1109/CoCoNet.2018.8476898.
  33. Paton, N. W. (2012). Active rules in database systems. Springer Science & Business Media.
  34. Complex activity recognition using acceleration, vital sign, and location data. IEEE Transactions on Mobile Computing, 18, 1488--1498. doi:10.1109/TMC.2018.2863292.
  35. Multiple imputation by chained equations for systematically and sporadically missing multilevel data. Statistical Methods in Medical Research, 27, 1634--1649. URL: https://doi.org/10.1177/0962280216666564. doi:10.1177/0962280216666564. arXiv:https://doi.org/10.1177/0962280216666564. PMID: 27647809.
  36. Ryan, M. D. (2011). Cloud computing privacy concerns on our doorstep. Communications of the ACM, 54, 36--38.
  37. Context-aware computing, learning, and big data in internet of things: A survey. IEEE Internet of Things Journal, 5, 1--27. doi:10.1109/JIOT.2017.2773600.
  38. Data stream clustering: A survey. ACM Comput. Surv., 46, 13:1--13:31. URL: http://doi.acm.org/10.1145/2522968.2522981. doi:10.1145/2522968.2522981.
  39. Recognizing detailed human context in the wild from smartphones and smartwatches. IEEE Pervasive Computing, 16, 62--74. doi:10.1109/MPRV.2017.3971131.
  40. Extrasensory app: Data collection in-the-wild with rich user interface to self-report behavior. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems CHI ’18 (pp. 554:1--554:12). New York, NY, USA: ACM. URL: http://doi.acm.org/10.1145/3173574.3174128. doi:10.1145/3173574.3174128.
  41. Context recognition in-the-wild: Unified model for multi-modal sensors and multi-label classification. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 1, 168:1--168:22. URL: http://doi.acm.org/10.1145/3161192. doi:10.1145/3161192.
  42. Characterizing context-aware recommender systems: A systematic literature review. Knowledge-Based Systems, 140, 173 -- 200. URL: http://www.sciencedirect.com/science/article/pii/S0950705117305075. doi:https://doi.org/10.1016/j.knosys.2017.11.003.
  43. Usmart: An unsupervised semantic mining activity recognition technique. ACM Transactions on Interactive Intelligent Systems (TiiS), 4, 16.
  44. Context-awareness for mobile sensing: A survey and future directions. IEEE Communications Surveys Tutorials, 18, 68--93. doi:10.1109/COMST.2014.2381246.
Citations (2)

Summary

We haven't generated a summary for this paper yet.