Introducing A Novel Method For Adaptive Thresholding In Brain Tumor Medical Image Segmentation (2306.14250v2)
Abstract: One of the most significant challenges in the field of deep learning and medical image segmentation is to determine an appropriate threshold for classifying each pixel. This threshold is a value above which the model's output is considered to belong to a specific class. Manual thresholding based on personal experience is error-prone and time-consuming, particularly for complex problems such as medical images. Traditional methods for thresholding are not effective for determining the threshold value for such problems. To tackle this challenge, automatic thresholding methods using deep learning have been proposed. However, the main issue with these methods is that they often determine the threshold value statically without considering changes in input data. Since input data can be dynamic and may change over time, threshold determination should be adaptive and consider input data and environmental conditions.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.