Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sum-Rate Maximization of RSMA-based Aerial Communications with Energy Harvesting: A Reinforcement Learning Approach (2306.12977v1)

Published 22 Jun 2023 in cs.IT, cs.LG, and math.IT

Abstract: In this letter, we investigate a joint power and beamforming design problem for rate-splitting multiple access (RSMA)-based aerial communications with energy harvesting, where a self-sustainable aerial base station serves multiple users by utilizing the harvested energy. Considering maximizing the sum-rate from the long-term perspective, we utilize a deep reinforcement learning (DRL) approach, namely the soft actor-critic algorithm, to restrict the maximum transmission power at each time based on the stochastic property of the channel environment, harvested energy, and battery power information. Moreover, for designing precoders and power allocation among all the private/common streams of the RSMA, we employ sequential least squares programming (SLSQP) using the Han-Powell quasi-Newton method to maximize the sum-rate for the given transmission power via DRL. Numerical results show the superiority of the proposed scheme over several baseline methods in terms of the average sum-rate performance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications with unmanned aerial vehicles: Opportunities and challenges,” IEEE Commun. Mag., vol. 54, no. 5, pp. 36–42, 2016.
  2. D. Liu, Y. Xu, J. Wang, J. Chen, K. Yao, Q. Wu, and A. Anpalagan, “Opportunistic UAV utilization in wireless networks: Motivations, applications, and challenges,” IEEE Commun. Mag., vol. 58, no. 5, pp. 62–68, 2020.
  3. Y. Mao, B. Clerckx, and V. O. Li, “Rate-splitting multiple access for downlink communication systems: bridging, generalizing, and outperforming SDMA and NOMA,” EURASIP J. Wirel. Commun. Netw., vol. 2018, no. 1, pp. 1–54, 2018.
  4. B. Clerckx, Y. Mao, R. Schober, and H. V. Poor, “Rate-splitting unifying SDMA, OMA, NOMA, and multicasting in MISO broadcast channel: A simple two-user rate analysis,” IEEE Wireless Commun. Lett., vol. 9, no. 3, pp. 349–353, 2019.
  5. J. An, O. Dizdar, B. Clerckx, and W. Shin, “Rate-splitting multiple access for multi-antenna broadcast channel with imperfect CSIT and CSIR,” arXiv preprint arXiv:2102.08738, 2021.
  6. Z. Lin, M. Lin, T. De Cola, J.-B. Wang, W.-P. Zhu, and J. Cheng, “Supporting IoT with rate-splitting multiple access in satellite and aerial-integrated networks,” IEEE Internet of Things Journal, vol. 8, no. 14, pp. 11 123–11 134, 2021.
  7. W. Jaafar, S. Naser, S. Muhaidat, P. C. Sofotasios, and H. Yanikomeroglu, “On the downlink performance of RSMA-based UAV communications,” IEEE Trans. Veh. Technol., vol. 69, no. 12, pp. 16 258–16 263, 2020.
  8. W. Jaafar, S. Naser, S. Muhaidat, P. C. Sofotasios, and H. Yanikomeroglu, “Multiple access in aerial networks: From orthogonal and non-orthogonal to rate-splitting,” IEEE Open J. Veh. Technol., vol. 1, pp. 372–392, 2020.
  9. S. Morton, R. D’Sa, and N. Papanikolopoulos, “Solar powered UAV: Design and experiments,” in 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS).   IEEE, 2015, pp. 2460–2466.
  10. Y. Sun, D. Xu, D. W. K. Ng, L. Dai, and R. Schober, “Optimal 3D-trajectory design and resource allocation for solar-powered UAV communication systems,” IEEE Trans. on Commun., vol. 67, no. 6, pp. 4281–4298, 2019.
  11. T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor,” in Proc. Int. Conf. Machine Learning, 2018, pp. 1861–1870.
  12. T. Quyen, C. Nguyen, A. Le, and M. Nguyen, “Optimizing hybrid energy harvesting mechanisms for UAVs,” EAI Endorsed Transactions on Energy Web, vol. 7, no. 30, 2020.
  13. H. Kim, J. Lee, W. Shin, and H. V. Poor, “Shallow reinforcement learning for energy harvesting communications with imperfect channel knowledge,” IEEE J. Sel. Topics Signal Process., vol. 15, no. 5, pp. 1258–1271, 2021.
  14. Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels,” IEEE Trans. Signal Process., vol. 52, no. 2, pp. 461–471, 2004.
Citations (3)

Summary

We haven't generated a summary for this paper yet.